Downloaded from http://www.everyspec.com

MIL-STD~1589C (USAF)
. | This document has been approved ! 6 July 1984
i for public release and sale: its| SUPERSEDING

i distribution is unlimited l MIL=STD~1589B (USAF)
6 June 13980

MIL2TARY STANDARD

' JOVIAL (JT3)

No deliverable data is required |
1
1

by this document. FSC IPSC

Downloaded from http://www.everyspec.com

MIL-STD-1589C (USAF)
6 July 1984

DEPARTMENT OF AIR FORCE

Washington DC 20301

JOVIAL (J73)
MIL-5TD-1589C
1. This Military Standard is approved (or use by the Department of the Air

Force, and is available for wuse by all Departments and Agencies of the
Department of Defense.

2 Recommendations, corrections, additions, or deletions snould be
addressed to: Commander, Rome Air Development Center, Attn: RBE-2, Griffiss
AFB NY 13441,

ii

Downloaded from http://www.everyspec.com

MIL~STD-1589C (USAF)
6 July 1984

FOREWORD

This revised document was coordinated as Change Notice 1 to MIL-STD-15898B.
Due to the extent of changes it has been approved as MIL-3TD-1589C. This
version contains no changes frow the coordinated version other than those
required for reformatting. MIL-STD-1589C (USAF) defines the upgraded JOVIAL
(J73) programming language.

The sections are organized in a top~down wmanner. The first section
describes the interactions between the modules of the complete program so that
in subsequent sections the structures of the language can be described (to the
extent possible) without reference to their interaction with other structures,

Most sections are divided into separate parts entitled "Syntax,"
"Semanties," and "Constraints.” The "Syntax" deseriptions define the grammar of
the language in a modified BNF notation. The "Semantics” discussions define the
meaning of constructs that satisfy the Syntax and Constraints. The
"Constraints"™ discussions eénumerate non-syntactic requirements that must be met
in order for the given constructs to be legal. The intent is that the Syntax,
Semantics, and Constraints not be redundant with each other - e.g., the
Semantics sections do not normally repeat something that should be obvious from
the Syntax, neither do they repeat stipulations that are listed as Constraints.

Some of the designated Constraints apply at compile time, and others pertain
to errors that are not detectable until the compiled program is executed. In
order to conform te¢ this standard, a J73 compiler must detect compile~time
errors, but it is not required to generate code for run-time checks.

The Appendix provides a cross-reference index to construets that appear in
the Syntax. For each construct, the index gives the number of the section where
that construect is defined and the numbers of the sections where that construct
is used in a definition.

The following metalanguage conventions have been observed in this document:

1. Terminal symbols, i.e., those which actually appear in a program are
written in upper case. For example:

BEGIN
END
STATIC

2. Non-terminal symbols, i.e., those which represent groups of terminal
symbols are written in lower case and enclosed between < and >. If any
non-terminal symbol is longer than one word, the words are Separated by
a hyphen. For example:

{compool-module>
<ordinary-table-body>

iii

Downloaded from http://www.everyspec.com

MIL-STD-1583C (USAF)
6 July 1984

3.

u.

The following special symbols are used in the metalanguage:

.-
. .-

L1

means "is defined as." For example,

{a> 11z <o
where <a> is defined as the string followed by the string
<e>, Definitions that do not fit on one line may extend to the
next line or lines.
The | symbol indicates that what follows is an alternate
choice of definition for the non-terminal to the left of
the ::= symbol. For exanmple,

£a» ::z | <¢>

where <a> is defined as either the string or the string <c>.

If a string may optionally be present, it is enclosed between
[and 1. For example,

<a> 1= [<Db>] <e>

where <a> is defined as either the string <c> or the string
followed by the string <ec>.

The following syubols have metalinguistic meaning when appended
te a non-terminal:

LA

geee

*
HE RN

One or more instances of the string represented by a
non=-terminal

One or more instances separated by a comma

One or more instances separated by a colon

For example:

<8244 Represents a single <a> or any sequence of <a>'s

(e.g., <a> or <a> <a> or <a> <a> <a> <a> ete.}

[<a>...] Represents the null string or any sequence of <a>'s

{a,eee Represents a single <a> or any length sequence of <a>'s

<a»:

separated by commas {e.g., <a>» or <a>»,<a> or
<a>,<a>,<a> ete.)

. Represents a single <a> or any length sequence of <a>'s

separated by colons (e.g., <a> or <a>:<a> or
<a>:<ad:<a> ete.)

iv

Downloaded from http://www.everyspec.com

MIL-STD-1589C (USAF}
6 July 1984

If a non-terminal appearing on the right side of the ::= is not defined
in that same sub-section, the number of the sub-section where it is
defined appears in parentheses in the right margin.

In a ™"Semantics" or "Constraints" section, non-terminal symbols are
enclosed between < and > when the usage refers to coustructs occurring
in a T"syntax" section or when the specific J73 meaning might be
confused with generalized programming usage.

Throughout this document, the symbols used for the prime, the quotation
mark, and a blank are as follows:

1. Prime ("}
2. Quotation mark (")

3. Blank ()

. Characters and symbols are defined in Section 8.0 of this document.

Downloaded from http://www.everyspec.com

MIL-STD=1589C (USAF)
6 July 1984

vi

Paragraph

* & * & = & s * s e
— b —)
« & ® s & »
¢ & & » w =
=1 W =

WU B NN N PN M cd e ed ek s b o

* @

»

.

F VIR \ S

« = = 8 8 2 ¢ &
L] = » e 9
—a

« s ¢ @
= IR U £ Al V) = b 0 e ot sk ok i ed a3 a3 oob o
fo

MNP NN ORI NN R DD

Downloaded from http://www.everyspec.com

MIL-STD=-1589C (USAF)

6 July 1984

CONTENTS

GLOBAL CONCEPTSQ--.-o--o-n.o....l.o-----I.-l--uocioool

The compleéte ProgZram sesseescescessossssovscsncnanss
MOdULESuueuansnssnsonnansvsasicosovonconconnonnonssns
Compool MOAULES evuvensocnosnssssesssssostnsnsnannnss
Procedure moduleS..ccessesevesvasscessnsarsssossssnne
Main program mOduUleS seeseeecccccsssansossssnsssnsss
Special considerations ciseeeieressesscornesnsernanas
Conditional cOmMPilatioNe.uicessessascconnonsesansanss
SCOPE Of NAMES +uvssvivsvesnsascesncessessasstsnseca
Implementation parameterS...cssecsscssesscscsccnsenes

DECLARATIONS (AR RN RN R ER NN RN RN NN NN NN

Data declaralionS.ccevescsssvsssnesssssavscasnsnnnas
Item declarationS.eesssereessestoenscasesnssonsacnsnns
Integer type descriptionS.ccecceccsnnsasersassasnsns
Floating type descriptions ..eiiececessssasnsncnnacs
Fixed type descriplionS.cicescessnssnaonsansosnesnas
Bit type descriplionS.ceccsssassasrsesnessasccersnsne
Character type descriptionS.eeceesssessscossssvossenss
Status type descriptions ciiiseseesssssssassesacrses
Pointer fype descriplion2.seececessvesracssosnsssnnsne
Table declarations sesevesveesnsesssnncssacasacncanss
Table dimension listS.esesessccnncssnansssasssssnase
Table Struchure..sessessesvesiacssnssncsaassnnsnssas
Ordinary table entrieS ..ueessescescecssasnsssssosss
Specified table entrieS.iessesricerecceacaconsannsss
Constant declaratbtionS.cesssesvisevvassssncrsnsoannesas
Block declarationsS e.iessscssscssaccsasscnnssensassns
Allocation of data objects .cveesscesreescansesnsens
Initialization of data objects .sievsveesvessnsnnenns
Type declarationS.ssessssscsacsvssroesnennssnnsnnsse
Statement name declarations...ieevecesesicssncscsens
Define declarabionS.ceeceveesssssasrvsonsensssssassen
Define Calls seeinasvassssssssscssatsitonnsnnnonnnne
External declarationsS...cessesvesssvscsvestsonsrnsones
DEF sSpecifications .coveescessesnrssssssscssssssnssnes
REF specifications ..ceeersssceesesscccsnssscasssncnns
Overlay declarations tieesessscsssencsnssnssasnsssse
Null declarationS.ececssensreersosncsssnvssssscsssreasns

PROCEDURES AND FUNCTIONS sieesceosnvsnsonusnsasnsssosnans

PFOCEdUPGS LN NI I N I N I I A I B A I NI I N N A S A
Functions-.--...-..o-...-...-.---.--.-----.--.---.--

Parameters of procedures and functions ..eeeessscase

vii

Page

U EWw Wi = oo

48
49
50
51

Downloaded from http://www.everyspec.com

MIL=-3TD-1589C (USAF)
& July 1984

CONTENTS - Continued
Page

Paragraph 3.4 Inline procedures and functions.s.ecsevsncsessnecess 55
3.5 Machine-specific procedures and functionS....ec..... 56

STATEMENTS seessscsssannssersssssnsscasnssvessrsanassnse 57
Assignment SLatementS.secesssssossssssnssccessssssss 5B
LoOp StatementS.civessesscssssnsacssssassssnasessnns 59
IF StatementS..eeesssscasosnssacssansnnssssssnranassss 62
CASE StatellentS.ueessssansecssssscassssssenvsssssssnns 62
Procedure call atatementS.ceesssvessrsssstssnsnncsons 65
RETURN StatementS..cssvecessssnsesoranvsssssasarsncass 66
GOTO statementS.cescscssansassnsnrsassssesensnsssnssns 66
EXIT StatementSeeesscceasssosscensscrosssnsssnnnsssan 67
STOP StatementS...cessvssncscsssssnnsssssasnnocossnnoes 67
ABORT StatementsS .cuveeessruretsssccccancsnnssissssnse 68

st PFEF R EEE
L)
PR ol e o e NS) I~ WY \E R]

(=)

FORMULAS vesnesssssassnsassssssossusnasansnsssssncnase 69
Nunmeric formulas seeesssscsssanssssrsssesnsscscsnnns ‘A
Integer FOPMULAS cuuvecesrnnncssssossnnnsssssnsensse T
Floating FormMUlaS..cesevossesscasarsnscsssssnosssnss {3
Fixed fOrmulas sessssscssssasssrnscssssnsasssssscsas 75
Bit fOrmMUlAS .vevvssssncassasssasastssassssccccscannss 78
Relational eXpressSionsS sueeesssscesessasssssascscsss 19
Boolean fOormulaS ...eeecessssnsorssacssnsssaassssasss 81
Character fOrMUlES .vesvevensssccssstacsacrsannssansce 81
Status fOrMUlaS.cerecsasvsosassssnsssanancssssnssnasns g2
Pointer FOrmulas cesessancessssrseasssssnnnvsssssssnna 83
Table FOrMUlAS seseecossnrssncasssrosannncnrsnssnasens 83

L] *« 8 » * @
N EWNNNN = - = 2O

. . e .

N W M -

*

AW AR A AU U U AN AR A AR

DATA REFERENCES ..t cicenssassstensssrasncssncnansssvsnnse 85
Variable and block referenceS..cececsssssssssasascrs 85
Named consStantS.c.csesecssrancscsssancessssasssssossnas 89
Function €allS cuveescassssssesasnnsssssssesssscanns 1
LOC fUnCLion ..evsscsssnssscsssnavsssnasasassnasssns 92
NEXT funCLiOfesevsascsscessnsncncsnsssssassnasassransnses 93
BIT fUNCLION siesecescosnnsessonosasssnsasnsnnrssssnns 9y
BYTE fUNCtiOfseacesssssssrennnessnsasnsascsnsosssnns 95
Shift fUNCLiONSeivseoassanccssansasrssssasanscscsssnnse 95
ABS fUNCLION ceeesrevrvssrsasscsnnsacscnsosassnsassnn 96
Sign functioNessscessrenossssssacnnncssssssovsssssance 96
Size fUNCLioNS .eseevsssressccnsnssenncacsssssnancssns 96
Bounds fUNCLIiONS seesiceecesccccnssosssnsssssssranss 98

0 NWDSEN functioNesscesssscnsessssssssnssssnneseasnasns 98

ARy O O Y

Wi Wiw wiwWiw w i W N — O
.

L] L] L)

.
= D O W =

viii

Paragraph 6.,3.11
6.3.12

Table

Appendix

GO QD o 0D Co 0O o Co 00 Ce 00 0O Co o (D
-
Vifwiwwwww MmN =0

L » -

7.0

.
Sy =

a
U st o —

.
-
N -

.

e @« & 8
- .
N =

(Yo Ve Vo Ve JENe RV PV RV IV Ve Ve RV« Vo RVe JiVe §¥0
L]
- o @~~~ N Wi = O

[¢4])
]
i

Downloaded from http://www.everyspec.com

MIL-STD-1589C (USAF)

6 July 1984

CONTENTS - Continued

Status inverse fUNCLiONS ceerseavocesenancennaancess
NENT function..ll.ll'.......'Il.ll..ll.....l-Il.l!.l

TYPE MATCHING AND TYPE CONVERSIONS tovvevevccenconnsss

BASIC ELEMENTS L N N N N N N N Y E LR R

ChaPaCterS AR RN EE LR R R R R NN KN NI I BN S R RN RN R R

SYMDOLS e s esiesnsessasnnasncosssonornonsecnncnnenss
NamESeeoueenessssosionncennaansornessnsnansacnnssses
Reserved WordsS ..cvivresncosssssncsncnssonesnaannans
P eralOr 8. s i assnersastessnosseesacnnersnseosannanses
SePArALOrS it iinrerttrrnersecsnunrranttancccenennase
Literals seseecsccascsnssrsassencanssanssanncnsnssns
Numeric literals .i..ccesesnccsscaanrsssonmnsnsassnsan
Bit literals .sieeececscesvesstosncscsnnesananncnnns
Boolean literals .eevieeececssctecnrnrossnnnncnassnnns
Character literals .c.ciececesassessossnnssasnasnannns
Pointer 1literals coieeeesiosiecnoocncssacsensssannnes
COMMENES t.vuesvcerssnsracsnnsnsensscnnssscenannannss

Blanks LA RS LA R R R NS NN RN R I I A N R N IR N R R Ry

DIRECTIVES LA R AR SRR R NN I IR R I R SR N RA Ra

Compool direchives suieeeseiscecnsssnaossssenncensees
Text directives..ciiirnsresrovenecsscorasonassnannnans
Copy directiveS.s i reeneassossannaesncanacnnassens
Skip, begin, and end directiveS.ceeeeveersssasnnncns
Linkage directives suuveseesseesesssvesncsnannsanans
Trace directives .uieeseescncsssesvtovncnnsnasnnssss
Interference directiveS.iiseiisoseannesocasnoroannas
Reducible directives siiieeceescescesronrrensenccans
Listing directives .evsesvessscecsscessonsananocncnnes
Source=1isting directiveS.c.iesscecnsrssssaonnsencnos
Define-1isting directiveS.uisseesncessnennennooncenses
Register directivesS..eienecneossesteoronreconsnnsenas
Expression evaluation order directives .ceeeseceeses
Initialization directiveS.e.eeeeeecacsesssonennnssss
Allocation order directiveS..uceseeseessavesecccenes

Bit-literal bead Values LR RN AN RN N NN NN RN N RN A R Y

Cross reference iNA@X .ueeseeessescasroserensesncenss

ix

Page

99
99

101

109
109
110
11
112
113
114
115
115
117
118
118
120
120
120

122
123
124
124
125
125
126
127
128
128
128
129
129
130
131
Ik}

119

133

Downloaded from http://www.everyspec.com

MIL-STD-1589C (USAF)
6 July 1984

Downloaded from http://www.everyspec.com

MIL-STD-1589C (USAF)

6 July 1984
1.0 GLOBAL CONCEPTS
1.1 THE COMPLETE PROGRAM
Syntax:
{complete-program> s <module>...
<module> ::z <compool-module> (1.2.1)
I <procedure-module> (1.2.2)
| <main-program-module> {(1.2.3)

Semantica:

A <cowplete-program> of the J73 language gives the complete specification of
a computational algorithm to be performed. A <complete-program)> consists of a
group of one or more <modules> that are compilable separately and which way be
subsequently bound together for execution as a unit. 4 <module> is the smallest
entity in the language that may be separately compiled.

A <complete-program> may contain zero or more <compool-modules> and zero or
more <procedure-modules>.

Constraint:

A <complete-program> must contain exactly one <main-program-module.

Note:

A compiler wmay accept a file containing more than one <module>, but it is
not required to do so.” If it does accept such a file, it must process each
<module> as though it had been submitted separately.

1.2 MODULES

1.2.1 COMPOOL MODULES

Syntax;
<{compool-module> ::= START
COMPOOL <compool-name> ;
{<compool=declaration>...] (2.0)
TERM
<{gompool-name> ::1= <named (8.2.1)

Downloaded from http://www.everyspec.com

MIL-STD-1589C {USAF)
6 July 1984

Semantics: .

{Compool-modules> provide a means of declaring data objects, types, and
subroutines that are to be made external - i.e., that are potentially available
to other <modules> in the <{complete-program>. Another <module> may access the
napes declared in a gziven <compool-module> by use of a {compool-directive> (see
Section 9.1) that names the given compool or by use of external declarations
{see Section 2.5).

A {compool-module> may contain <compool-directives> that name other
{compocl-modules>.

By appropriate use of <def-specifications> and <ref-specifications> withir
<compool-declarations>, a user can control whether physical allocation take!
place within the <compool-module> itself or within the accessing <module> (ser
Section 2.5).

1.2.2 PROCEDURE MODULES

Syntax:
{procedure-module> ::z START
[{declaration®...] (2.0)
[<non-nested-subroutine>,...]
TERM |‘II'
{non-nested-subroutine> ::= [DEF] <subroutine-definition> (3.0)

Semantics:

<Procedure-modules> provide a means of separately compiling subroutines that
specify portions of the acticns of the <{complete-program>. .

If a <subroutine-definition> is preceded by DEF, that subroutine may be
invoked from within the <main-program-module> or from within another <procedure-
module>, provided that the referencing module contains an appropriate {ref-
specification> for the subroutine or accesses a compool containing such a
specification. ’

{Non-nested-subroutines> defined without a DEF may be invoked only from
within the <procedure-module> or <main-program-module> in which they are
defined. Similarly, all declarations in a <procedure-module> apply only within
that <procedure-module> (unless they are <external-declarations> - see 3ection
2.5).

Downloaded from http://www.everyspec.com

MIL-STD-1589C ({USAF)

6 July 1984
. 1.2.3 MAIN PROGRAM MODULES
Syntax:
{main-program-module> :s= START
[<{deeclaration>...] (2.0)

PROGRAM

{program-name> ;

{program-body>
[<non-nested-subroutine>...] (1.2.2)

TERM
{program-name> :iz <name> (8.2.1)
{program=-body> i:z <statement> (4.0)
i BEGIN [<declaration>..,] (2.0}
{statement>... (4.0
[<subroutine-definition>...] (3.0)
{{label>...] END (4.0)

Semantics:

The body of a <wain-program-module> is executed at the start of a {complete-
program>, When execution of the body is complete, execution of the <complete=
program> is complete. Unless the <{complete-program> consists of a single <main-
program-module>, the <{main-program-module> will contain one or more {ecompool-
directives>, references to externally-declared data, and/or c¢alls of DEF'd
subroutines in other modules.

Declarations in a <main-program-module> way be external or internal. If a
<non-nested-subroutine> has a DEF, it may be invoked either locally or from
within a <procedure-module>, provided that the referencing module contains an
appropriate <ref-specification> for the subroutine or accesses a compool
containing such a specification. If it does not have a DEF, it can be invoked
only from within the module in which it is defined.

Constraints:

The <program-body> must contain at least one non-null statement (e.g.,
STOP) .,

1.3 S3PECIAL CONSIDERATIONS
1.3.1 CONDITIONAL COMPILATION

Two methods are provided for conditionally suppressing generation of object
¢ode for portions of a JOVIAL module.

The !SKIP, !BEGIN, and 1!END directives {see Section 9.2.2) permit almost
complete suppression of processing of suppressed source. The only processing

3

rom http://www.everyspec.com

MIL-STD-1589C (USAF)
6 July 1984

done for suppressed source is to scan for the terminating !END directive.
Therefore the suppressed source may contain errors and/or statements
incompatible with other module source without affecting compilation.

The IF and CASE statements (see Sections 4.3 and 4.4} permit suppression of
generation of object code. Source for this suppressed object code must be
correct since it is subject to the same validity checks and processing of
directives as other source code. Only code that is unconditionally unreachable
is suppressed so this conditional compilation must produce the same results as
if the code was generated. Segments of code which are unreachable due to values
of <if=-statement> <boolean-formulas> or <case-selector-formulas> which are
{compile-time-formulas> and which dc not contain <labels> are always suppressed.
Implementations may choose to do a more complete analysis and also suppress
other recognized unreachable code.

1.3.2 SCOPE OF NAMES

{Procedure-modules> and the <main-program-module> can contain subroutines
(i.e., procedures and functions) nested to any depth. Each subroutine, as well
as the <program-body> and the <main-program-module> or <procedure-module>
itself, establishes a region or scope for which a name's declaration 1is active
and in which the <name> can be used. The scope of a <name> is that region of
the <complete-program> within which that <name> has a single meaning.

A name declared with a DEF or REF (see Section 2.5) is considered to be
external; all other names are internal. An external <name> can be used in any
module of the <{complete-program>, except within a scope containing an internal
name with the same spelling. An internal name c¢an be wused only within the
subroutine, <procedure-mcdule>, or <main-program-module> within which that name

is declared, but not within an enclosed scope containing a <name> with the same
spelling.

The <name> of a subroutine belongs to the scope in which that subroutine is
declared or defined.

For any given compilation, all names made available from referenced
{compool-modules> (see Section 9.1), as well as the name of the <module> being
compiled and all <compool-names>, belong to the same scope, referred to as
compool scope, which is considered to enclose the scope established by the
{procedure-module>, <main-program-module>, or <compool-module> being compiled.

System-defined names (e.g., machine-specific subroutines, implementation
parameters) belong to system scope, which encloses the compool acope. Such
names may be redefined by the programmer.

These rules ensure that any two names with the same spelling but with
distinet scopes are regarded as if they were different names,

Downloaded from http://www.everyspec.com

MIL=-STD-1589C (USAF)
6 July 1984

Constraints:

No two names having the same scope may have the same spelling. (This
constraint does not prevent two tables with different {table-names> to be
declared in the same scope using the same {table-type-name>. 3See Sections 2.1.2
and 2.2:)

No two external names may have the same spelling.

1.4 IMPLEMENTATION PARAMETERS
Syntax:

<integer-machine-
parawmeter> ti= BITSINBYTE

BITSINWORD

LCCSINWORD

BYTEPOS
(<compile-time-integer-formula>) (5.1.1)

i BYTESINWORD

i BITSINPOINTER
i INTPRECISICN

i FLOATPRECISION
i FIXEDPRECISION
i FLOATRADIX

i IMPLFLOATPRECISION
{ <precision>) (2.1.1.2)

i IMPLFIXEDPRECISION
(<scale-specifier> |, (2.1.1.3)
{fraction-gpecifier) (2.1.1.3)

{ IMPLINTSIZE
(<integer-size>) (2e141.01)

i MAXFLOATPRECISION
! MAXFIXEDPRECISION

i MAXINTSIZE

MIL-STD=-1589C {USAF)
6 July 1984

{floating-wachine-
parameter>

{fixed-machine-
parameter>

Semantics:

The machine

These cells are grouped or partitioned into the following units for purposes
the language specification.

(

Downloaded from http://www.everyspec.com

MAXBYTES
MAXBITS
MAXINT (<integer-size>
MININT (<integer-size>
MAYTABLESIZE

MAXSTOP

MINSTOP

MAXSIGBIGITS

MINSIZE

{compile=time-integer-formula>

MINFRACTION (

{compile-time-floating-formula>

MINSCALE (

{compile-time-floating-foruula>

MINRELPRECISION (

{compile-time-floating-foruula

MAXFLOAT (<precision>
MINFLOAT (<precision>)
FLOATRELPRECISION

{precision>)

FLOATUNDERFLOW
{ <precision>)

MAXFIXED ¢
<fraction-specifier>)

MINFIXED (
{fraction-specifier>)

{scale=-specifier>

{scale-specifier>

)

)

r

(2.1.1.1)

{(2.1.1.0)

{(5.1.1)

) (5.1.2)

) (5.1.2)

(5.1.2)

(2.1.1.2)

(2.1.1.2}

(2.1.1.2}

(2.1.1.2)

on which a J73 program runs contains an array of memory cells.

of

Downloaded from http://www.everyspec.com

MIL=-STD-1589C {(USAF)

6 July 1984
1. Bit - The smallest unit of storage (can contain one of
two values, which are represented by zero and one}
2. Byte - A group of one or more consecutive bits that is

capable of holding a single character of information

3. Word - A memory partition of one or more consecutive bits
that serves as the unit of allocation of data storage

i, Address Unit - The machine dependent unit used to identify
an address or location in memory

The number of bits per byte, word, and address varies from implementation to
implementation, and these quantities affect the representation and behavior of
data in the language. Machine parameters are constants that describe these
implementation~dependent differences. The values of these constants must be
specified as part of the implementation of a J73 compiler on any computer,
These names can then be referenced by a user to access the values associated
with that implementation.

The size of an <integer-machine-parameter> 1is the size of an {integer=
literal> having that value. The attributes of a <floating-machine-parameter> or
{fixed-machine-parameter> are as specified by its <precision> or its <scale-
specifier> and <fraction-specifier>. The values of the implementation
paraueters are as follows:

BITSINBYTE Number of bits in a byte

BITSINWORD Number of bits in a word

LOCSINWORD Number of locations (address units) in a word
BYTEPOS(PP) 4 permitted <{starting-bit> value for character

strings that cross word boundaries, PP is any
integer value between 0 and BYTESINWORD=1,
inclusive and BYTEPOS{PP) < BYTEPOS(PP+1).

BYTESINWORD Number of complete bytes in a word
BITSINPOINTER Number of bits used for a pointer value
INTPRECISION The number of bits that an implementation

Supplies to held the value of an integer iten
(exclusive of sign, if any) when no {integer-
sSize> is specified by the programmer .,

FLOATPRECISION The number of bits that an implementation
supplies to hold the value of the mantissa of
a floating point item (exclusive of the sign
bit) when no <precision> is specified by the
programmer

Downloaded from http://www.everyspec.com

MIL-STD-1589C (USAF)
6 July 1984

FIXEDPRECISION The number of bits that an implementation
supplies to hold the value of a fixed item
(exclusive of the sign bit) when no <fraction-
specifier> is supplied by the programmer

FLOATRADIX Base of the floating point representation,
specified as an integer

IMPLFLOATPRECISION(II} Number of bits (not including the sign bit) in
the mantissa of the representation for a

floating point value whose specified precision
is II

IMPLFIXEDPRECISION(SS,FF) The number of bits (excluding sign bit) an
implementation uses to represent an unpacked
fixed item with scale SS and fraction FF,
This value also determines the accuracy of .
fixed formula results.

IMPLINTSIZE(II) The number of bits (excluding sign bit) an
implementation uses to represent an unpacked 3
or U item with specified size II1.

MAXFLOATPRECISION Maximum specifiable precision supported by an
implementation for a {fleating-item-
description>

MAXFIXEDPRECISION Maximum value supported by an implementation
for the sum of the scale and fraction
specifiers in a <fixed-item-description>

MAXINTSIZE Maximum specifiable size (not ineluding the
sign bit) supported by an implementation for
signed and unsigned integers .

MAXBYTES Maximum value supported by an implementation
for a <character-size>; must not exceed
MAXBITS/BITSINBYTE

MAXBITS Maximum value supported by an implementation
for a <bit-size>; the maximum value of words
per entry in a table is MAXBITS/BITSINWORD,
and the maximum BITSIZE of a table entry is
MAXBITS

MAXINT(SS) Maximum integer value representable in 3S+1
bits (including sign bit)

MININT(SS) Minimum signed integer value representable in
SS+1 bits (including sign bit), using the
implementation's method of representing
negative numbers .

8

. Downloaded from http://www.everyspec.com —

MIL-STD-1589C (USAF)
6 July 1984

MAXTABLESIZE The maximum number of words an implementation
permits a table to occupy.

MAXSTOP Maximum specifiable value for an {integer-
formula> in a <stop-statement> (see Section
4.9)

MINSTOP Minimum specifiable value for an {integer-
formula> in a <stop-statement> (see Section
4.9)

MAXSIGDIGITS The maximum number of significant digits an

implementation will process for a fixed or
floating point literal (see Section 8.3.1)

MINSIZE(II) The minimum value of 35S such that II is less
than or equal to MAXINT(SS) and greater than
or equal to MININT{SS)

MINFRACTION(AA) The mninimum value of FF such that 2%%¥(-FF) is
less than or equal to AA. The value o¢f A4A
nust be greater than zero.

MINSCALE{ AA) The wminimum value of SS such that 2%#35 is
greater than A4. The wvalue of JA must be
greater than zero.

MINRELPRECISION(FF) The minimum value of PP such that
FLOATRELPRECISION(PP) is less than or equal to
FF. The value of FF must be greater than or

equal to FLOATRELPRECISION
(MAXFLOATPRECISION).
MAXFLOAT(PP) Maximum floating point value using only the

first PP mantissa bits (excluding sign) of the
implementation's floating point representation
whose actual mantissa length is
IMPLFLOATPRECISION(PP). PP must be greater
than zero and not exceed MAXFLOATPRECISION.

MINFLOAT(PP) Minimum floating point value representable in
exactly PP mantissa bits, (excluding sign) and
using the implementation's method of
representing negative numbers. PP must be
greater than Zero and not exceed
MAXFLOATPRECISION.

FLOATRELPRECISION(PP) Let FRPY be the smallest floating point value

greater than 1.0 wusing the Ffirst PP bits
{excluding sign) of the implementation’s
representation for floating point values,
FLOATRELPRECISION(PP) equals FRP1 - 1.0. PP

9

Downloaded from http://www.everyspec.com

HMIL-STD-1589C {USAF)
6 July 1984

must be greater than zero and nol exceed
MAXFLOATPRECISION.

FLOATUNDERFLOW(PP) The smallest positive floating point value
using exactly PP mantissa bits (excluding
sign) and such that both FLOATUNDERFLOW(PP)
and -FLOATUNDERFLOW(PP) are representable as
floating point values

MAXFIXED(SS,FF) Maximum fixed value representable in SS+FF+1
bits (including sign bit)

MINFIXED(SS,FF) Minimum fixed value representable in SS+FF+1
bits (ineluding sign bit), using the
implementation's method for representing
negative values

Note:

A FIXEDRADIX implementation parameter is not provided since fixed point
values are represented using radix 2 (see Section 2.1.1.3).

10

{declaration> :

Downloaded from http://www.everyspec.com

Syntax:

<compool-declaration> ::=z

Sewantics:

<Declarations> associate

4 <compool=declaration>

module>,

2.0 DECLARATIONS

<data-declaration>
{type-declaration>

{subroutine-declaration>

<{statement-name-declaration®

<{define-declaration>
{external-declaration)>
{overlay-declaration>
<inline-declaration>
{null-declaration>

BEGIN <declaration>...
END

<{external-declaration>
{conatant-declaration>
{type-declaration>
{define-declaration>
{overlay-declaration>

<{null-declaration>

MIL-STD=1589C (USAF)
6 July 1984

(2.1)
(2.2}
(3.0)
(2.3)
(2.4)
(2.5)
(2.6)
(3.4)
(2.7)

(2.5)
(2.1.3)
(2.2)
(2.4)
(2.6)
(2.7)

BEGIN <compool-declarationy...

END

iz a <declaration> that

1

<names> with programmer-supplied meanings.

appears in a <compool-

rom http://www.everyspec.com

MIL-STD-1589C (USAF)
6 July 1984

Conatraints

Except for <{statement-names>, names of subroutianes, type names in <{pointer=
item-descriptions>, and formal parameter names in subroutine <formal-parameter-
lists>, a name may not be used prior to the point at which 3 <declaration> for
that name appears.

2.1 DATA DECLARATIONS

Syntax:
{data-declaration> ::= <item-declaration> (2.1.1)
i <table-declaration> (2.1.2)
i <constant-declaration> (2.1.3)
i <block-declaration> {2.1.4)

Semantics:

{Data-declarations> declare <data-names> and their attributes. Three kinds
of data structures exist in J73:

1. Item - A simple data object of the language. An item is a variable of
a pre-defined or programmer-defined type having no constituents.

2, Table - An aggregate data object consisting of a collection of one or
more items, or an array of such collections. The collection of items is
called an entry. An entire entry in a table is selected by the use of
the table name, together with a sequence of indices ("subscripts") if
the table is arrayed. An item within an entry is selected by the use of
the item name and the appropriate number of subscripts.

3. Bloeck - A group of items and tables and other blocks to which is
allocated a contiguous area of storage.

Additionally, an item or table may be declared to be CONSTANT, in which case
its value cannot be changed during execution. A constant item must be given an
initial wvaliue v means of an <item-preset>. Blocks, items, or tables {(other
than constants) can specify, by means of an <allocation-specifier>, the
allocation permenence of the storage associated with their names. Non-constant
items and tables can optionally be given initial values by means of <item-
presets> or <{table-presets>.

The value of an uninitialized data object is undefined until it recelves a
value in an executable statement.

Declarations associate a <name> with a type. A type determines the set of
values that an object can have and the operations that can be performed on those
values. Types are grouped into related sets called type classes. The type

12

Downloaded from http://www.everyspec.com

MIL-5TD-1589C (USAF)
6 July 1984

classes are integer, floating, fixed, bit, character, status, pointer, and

table. Types within a type class are distinguished by the values of certain

Properties known as attributes. FRules concerning type mwatching are found in

Section 7.0.

2.1.1 ITEM DECLARATIONS

Syntax:
{item-declaration> itz ITEM <item-name>
{<allocation-specifier>] (2.1.5)
{item=-type-description>
[<item-preset>] ; (2.1.6)
{item~-name> s:= <name> (8.2.1)
<item-type-description> ::= {integer-type-description> (2.7.1.1)

i <floating-type-description> (2.7.1.2)
i <fixed-type-description> (2.1.1.3)
i <bit«type-description> (2.1.1.4)
i <character-type-description> (2.1.1.5)
i <status-type-description> (2.1.1.6)

<{pointer-type-description> (2.141.7)

Semantiecs:

{Item-declarations> declare itenms. Items are used as variables to retain
values in a J73 program. Allccation for items declared in {item-declarations>
will be such that no items share a word.

The <item-type-description> establishes the type of an item.

The <allocation-specifier> establishes the allocation permanence of items
which are not enclosed in blocks. This alloeatiocn permanence 1s automatic if
the declaration is in a subroutine and the {allocation-specifier> is omitted,
otherwise it 1s STATIC (see Section 2.1.5). Items enclosed in blocks inherit the
allocation permanence of the enclosing block.

The <item-preset>, if present, specifies an initial value for the item.

Constraints:

Only items having STATIC allocation (explicitly or by default) may contain
an <item-preset>,.

13

Downloaded from http://www.everyspec.com

MIL-STD=1589C (USAF)
6 July 1684

Declarations of items that are <formal-input-parameters> or <formal-output-
parameters> (see Section 3.3) must not contain an <allocation-specifier> or
{item-preset>.

An <item-declaration> within a block must not contain an <allocation=-
specifier>.

2.1.1.1 INTEGER TYPE DESCRIPTIONS

Syntax:
{integer-type- .
description> ::= <integer-item-description>
i <integer-type-name>
{integer-item-
desecription> ::= 5 [<round-or-truncate>] (2.1.1.2)
[{integer-size>]
i U [<round-or=-truncate>] (2.1.1.2)
[<integer-size>]
<integer-size> ::= <complle-time-integer-formula> (5.1.1)
<¢integer-type-name> ::s <item-type-name> (2.2)

Semantics:

An <integer-type-description> is used to specify a signed integer type or an
unsigned integer type. S specifies a signed Iinteger type; U specifies an
unsigned integer type.

The <integer-size> attribute specifies the minimum number of bits of storage
required to hold the maximum value of the integer (excluding the sign, if any).
If <integer-size> is omitted, it defaults to INTPRECISION. The number of bits
allocated for signed integers will be at least <integer-size>+1, and for
unsizned integers will be at least <{integer-size>.

The value set for a signed integer type with size S§ is MININT(SS) through
MAXINT(SS). The value set for an unsigned integer type with size S5 is 0
through MAXINT{SS3).

The <round-or-truncate> attribute specifies truncation or rounding is to
occur when a value is converted to an integer type. If R is specified, rounding
will occur. If T is specified, truncation towards minus infinity will occur.
If Z is specified, truncation towards zero will occur, If the attribute 1is
onitted, truncation in an implementation-dependent manner will occur.

14

Downloaded from http://www.everyspec.com

MIL-STD-1589C (USAF)
6 July 1984

Conatraints;:

The maximum value that can be specified for <integer-size> is MAXINTSIZE, an
implementation parameter.

<{Integer-size> must be greater than zero.

An <integer-type-name> must be an <item-type-name> declared in an <item-
type-declaration> that contains an {integer-type-description> (see Section 2.2).

Notes:

An implementation may choose MAXINTSIZE > BITSINWORD-1.

The <round-or-truncate> option has a use only when an {integer-item-
description> is used in an <integer-conversion> (see Section 7.0).

2.1.1.2 FLOATING TYPE DESCRIPTIONS
Syntax:

{floating-type-description> ::z <floating-item-description>

i <floating-type-name>

<floating-item=-description> ::= F [<round-or-truncate>]
[<precision>]

<round-or-truncate> ::= , R

N |

R A
{precision> i:= <compile-time-integer-formula>(5.1.1)
<floating-type-name> t:= <{item-type-name’ (2.2)

Semantics:

A <floating-type-description> is used to specify a floating type. The
<{precision> attribute specifies the minimum number of bits of storage required
to hold the value of the mantissa. If <precision> is omitted, it defaults to
FLOATPRECISION, an implementation parameter.

The <round-or-truncate> attribute is used to specify whether truncation or
rounding is to occur when a value of a floating type with a greater <precision>
is assigned to an item of this type. If R is sgpecified, rounding will occur.
If T is specified, truncation towards minus infinity will occur. If Z 1is
specified, truncation towards zero will occur. If the attribute is omitted,
truncation in an implementation-dependent manner will occur. Rounding and

15

Downloaded from http://www.everyspec.com

MIL-STD-1589C (USAF)
6 July 1984

truncation take place with respect to the implemented precision of the floating .
type. (Note: IMPLFLOATPRECISION(PP) is an implementation parameter defining
what precision is provided when precision PP is specified.)

The value set for a floating type with {precision> PP is MINFLOAT(PP)
through -FLOATUNDERFLOW(PP), 0, and FLOATUNDERFLOW(PP} through MAXFLCAT(PP).

Constraints:

The maximum value that can be specified for <precision> is
MAXFLOATPRECISION, an implementation parameter.

(Precision) must be greater than zero.

A <floating-type-name> wmust be an <iteu-type-name> declared in an <iten-
type-declaration> that contains a <floating-type-description> (see Section 2.2).

Note: .

Since a <floating-type-description> specifies only the minimum precision
required, an implementation is free to support only one or two levels of
implemented precision. Which implemented precision level represents a floating
type depends on the value of the specified precision. The implemented precision
must never be less than the specified precision. Since an implementation may
provide more than the specified precision, it is consistent to round or truncate
a represented value only if converting from a longer to a shorter implenented
preecision. .

2.1.1.3 FIXED TYPE DESCRIPTIONS

Syntax:
{fixed-type-description> ::= <fixed-item-description> .
! {fixed-type-name>
{fixed-item-description> ::= A [<round-or-truncate>] (2.1.1.2)
{scale-specifiar>

[, <fraction-specifier>]

{acale=-specifier> (compile-time-integer-formula)(5.1.1)

<fraction-specifier> 11z <complle-time-integer-formula>(5.1.1)
{fixed-type-name> :1z <item-type-name> (2.2)
Semantica:

A <fixed-type-description> is wused to specify a fixed point numeric type.
If SS is the value of the <scale-specifier> and FF 1is the value of the
{fraction-specifier>, then SS+FF is the winimum number of bits 1in the .

16

Downloaded from http://www.everyspec.com

MIL=-STD=-1589C (USAF)
6 July 1984

representation, excluding the sign bit. When SS and FF are both positive, 33
specifies the number of bits to the left of the binary point (excluding the
sign bit) and FF the ninimum number of bits to the right (see Hote below). When
SS 1is negative, the binary point is assumed to be ABS(SS) bits to the left of
the first (non-sign) bit of the representation. Similarly, when FF is negative,
the least significant bit of the representation is no more than ABS{FF) bits to
the left of the binary point.

The (nowinal} precision of a fixed point type is the sum of its scale and
fraction specifier, The implemented precision may be greater than the nominal
bits required. If <{fraction-specifier> is ocuitted, the fixed point type has a
default precision given by FIXEDPRECISION, an implementation parameter, and the
implied value of the ocuitted {fraction-specifier> is FIXEDPRECISION-3S, where 38
is the <scale-specifier>,.

If FF 1is a fixed point itewm declared with a default {fraction-specifier>,
then FIXEDPRECISION = BITSIZE(REP(FF))=1.

The <round-or-truncate> attribute specifies truncation or rounding is to
occur when a value is converted to a fixed point type. If R 1is specified,
rounding will oceur. If T is specified, truncation towards winus infinity will
oceur. If Z is specified, truncation towards zero will occur. If the attribute
is omitted, truncation in an implenentation-dependent manner will occur.
Rounding and truncation take place with respect to the implemented precision of
the fixed type (see Note below).

The value set of a fixed point type with scale SS and fraction FF is
MINFIXED(SS,FF) through MAXFIXED(SS,FF).

Conatraints:

The suw of the scale and fraction specifiers (i.e., the nominal precision)
must be greater than =zero and mnust not exceed MAXFIXEDPRECISION, an
implementation parameter,

The value of <scale-specifier> must lie in the range =127 through +127.

A <fixed-type-name> wmust be an <item-type-name> declared in an {item-type-
declaration> that contains a <fixed-type-description> (see Section 2.2).

Notes:

The set of exactly representable fixed point values is determined by a fixed
type's scale and fraction specifiers. 4 <fraction-specifier> value, FF, means
fixed point values must be represented with a precision greater than or equal to
2%#(_FF). A <scale-specifier> value, SS, means the maximum representable value
is at least 2%%35 . 2#%(_FF) and less than 2%%53.

An implementation is permitted to support more than one level of inmplemented
precision for fixed point types. For computational purposes, values will be
represented using the smallest implemented precision level (e.g., one word or
two words) consistent with the value's nominal precision. For storage purposes

17

Downloaded from http://www.everyspec.com

MIL-STD-1589C (USAF)
6 July 1984

in packed tables, a fixed point value need occupy no more than the number of
bits specified by the nominal precision plus one bit for the sign.

IMPLFIXEDPRECISION(SS,FF) is an implementation parameter defining what
precision is provided for an unpacked fixed point item when nominal precision
S3+FF 1is specified. In addition, the implemented precision of a packed iten
(i.e., an item in a specified table, packed ordinary table, or a tight table) as
well as an unpacked item is given by BITSIZE(REP{FI))-1, where FI is the fixed
point item.

The implemented precision of a fixed item is the number of bits (excluding
sign bit) used to store the item. Assignments to such items round or truncate
with respect to this precision, which is never less than the specified
precision. Rounding or truncation can change a fixed point value only if Lhe
implewented precision is shortened.

It should be noted that specifying R, T, or Z in an item declaration only
affects the conversion of literal values (see Section 8.3.1) and assignments of
fixed point values when the stored representation of the value is shorter than
the representation used for computations.
2.1.1.4 BIT TYPE DESCRIPTIONS
Syntax:

<bit-type-description> ::= <bit-item-description>
{ <bit-type-name>

<bit-item-description> ::= B [<bit-size>]

{bit-size> ::1= <couwpile-time-integer-formula> (5.1.1)
<{bit-type-name> t:= <item-type-name> (2.2)
Semantics;

A <bit-type-description> is used to specify a bit string type. The <bit-
size> attribute specifies the number of bits in the string. If <bit-size> 1is
omitted it defaults to 1.

Constraints:
The maximum value that can be apecified for <bit-size> is MAXBITS, an
implementation parameter. The minimum value that can be apecified for <bit-

size> is one.

A <bit-type-name> umust be an <item-type-name> declared in an <{item-type-
declaration> that contains a <bit«type-description> {see Section 2.2).

18

Down oaaea rom ' ttp:”www.everyspec.com I_

MIL-STD-1589C (USAF)

6 July 1984
2.1.1.5 CHARACTER TYPE DESCRIPTIONS
Syntax:
<character-type-description) 1:= <character-item-description>
i <character-type-name>
{character-item-description> ::= ¢ [{character-size>]
{character-size> ::= <compile-time-integer-formula>{(5.1.1)

<character-type-name>

{item-type-name> (2.2)

Semantics:

4 <character-type-description) is used to specify a fixed-length character
string type. The <{character-size> attribute specifies the number of characters
. in the string. If <character-size> is omitted it defaults to 1.

Constraints:

The maximum value that can be specified for <{character-sized> is MAXBYTES, an
implementation paraneter. The minimum value that cean be gpecified for
{character-gize> i3 one.

A <character-type-name> must be an {item-type-name> declared in an <item-
type-declaration> that contains a <character-type-description> (see Section
2-2)0

2.1.1.6 STATUS TYPE DESCRIPTIONS

Syntax:

. <status-type-description) <status-item-description>

{status-type-name>

<status-item-deseription> STATUS [<status-size)]

(<status-list>)

{status-list> ti= <default-sublist>
i (<default-sublist> ,]
<specified-sublist>,..,
{default-sublist> t!= <status-constant>,...
<specified-sublist) iz <status-list-index>

<status-constant>,...

® :

Downloaded from http://www.everyspec.com

MIL-STD-1589C (USAF)
6 July 1984

{status-list-index> HH <coupile=-time-integer-foruula> {5.1.1)

v (<status>)

{status-constant>

<{status> 11z <pame> (8.2.1}
I <letter> (8.1)
| <reserved-word> (8.2.2)
¢{status-type-name> 11z <item-type-naue> (2.2)

{status-size> {compile-time-integer-formula> (5.1.1)

.
.-
11}

Semantics:

A <{status-type-description> is used to specify a status type. The <status-
1ist> is used to define the value set of the type, which consists of a set of
named <status-constants>. These named <status-constants> are considered to be
the logical values of the status type. Associated with each logical value is a
representational value, i.e., how the value is actually represented internally.
If the <status-list> contains only a <{default-sublist>, the status type is said
to have a default representation. The <status-constants> in the <default-
sublist> will be assigned representational values 0 through N-1 {(where N is the
number of <status-constants> in the sublist) in the order in which they are
specified in the list. The <{status-constants> in each <specified-sublist> will
be assigned representational values <status-list-index> through {status-list-
index> + N-1 {where N is the number of <{status-constanis> in the sublist) in the
order in which they are specified.

For a given <status-list>, the value of any <status-constant> is considered
to be greater than the value of another ¢status-constant> Thaving a lower
representational value.

<{Status-size> specifies the minimum number of bits to be allocated to hold
the status value (exeluding the sign bit, if any). If it is omitted, it
defaults to the minimum needed for the representation as an integer value. If
the representation of the lowest-valued <status-constant> in the 1list is leas
than zero, signed integer representation will be used; otherwise, unsigned
integer representation will be used.

Constraints:
The <status-constants> wust be unique within the <{status-list>.

The <status-list-indices> within a <status-list> must be specified such that
all the <status-constants> in the <status-list> receive unique representational
values.

The value specified in <{status-size> must be greater than or equal to the
minimum needed for the representation of the status values (excluding the sign
bit, if any) and less than or equal to MAXINTSIZE.

20

Downloaded from http://www.everyspec.com

MIL-STD-1589¢C (USAF)
b July 1984

The representation of a status value cannot be less than MININT (BITSINWORD-
1) and it cannot exceed MAXINT(BITSINWORD-1).

A <status-type-name> nust be an ¢item-type-name> declared in an {item-type-
declaration> that contains a <status-type-description> (see Section 2.2).

Note:

The use of a <name> in a <status> does not constitute a declaration of the
<name> or a reference to a declared <name> having the same spelling. Within a
given scope, a <status> <name> and a declared <name> can have the sane spelling
and no conflict will result.

2.1.1.7 POINTER TYPE DESCRIPTIONS
Syntax:

<pointer-type-description> : <{pointer-item-description>

i <pointer-type-name>
{pointer-item-description> ::= P [<type-name>]
{pointer=-type-nane> = <item-type-name> (2.2)
{type-name> ii= <{item-type-name> {2.2)

i <table-type-name> (2.2)

| <block-type-name> (2.2}

Semantics:

A <pointer-type-description> is used to specify a pointer type. If the
{pointer-item-description> contains a {type=-name>, then the pointer being
specified is a typed pointer. If the {type-name> is omitted, then the pointer
is an untyped pointer.

A typed pointer contains the address of a data object of the type specified
by the <type-name>. The object being pointed to may be obtained by
dereferencing the pointer {see Section 6.1).

An untyped pointer contains the address of a data object of any type.
However, such a pointer must be converted tg a typed pointer (see Section 7.0)
before it may be dereferenced or assigned to a typed pointer.

Constraint:

A <pointer-type-name> must be an <item-type-name> declared in an {item-type-~
declaration> that contains a <pointer-type-description> (see Section 2.2).

21

Downloaded from http://www.everyspec.com

MIL-STD-1589C (USAF)
6 July 1984

2.1.2 TABLE DECLARATIONS

Syntax:
{table-declaration> ::= TABLE <table-name>
[<allocation-specifier>] (2.1.5)
[<dimension-1ist>] (2.1.2.1)
{table-description>
<{table-description> ::= [<structure-specifier>] (2.1.2.2)
<{entry=-specifier>
| <table-type-name> {2.2)
[{table-preset>] ; (2.1.6)
<entry-specifier> 1= <ordinary-entry-specifier> {(2.1.2.3)
| <specified-entry-specifier> (2.1.2.4)
{table-name> 11z <name> (8.2.1)

Semantics:

{Table-declarations> declare named aggregate data objects. The presence of
a <dimension-list> indicates that the table is an arrayed collection of entries.
The <dimension-list> specifies the range of indices of the array.

The <allocation-specifier> establishes the allocation permanence of tables
which are not enclosed in blocks. This allocation permanence 1is automatic if
the declaration is in a subroutine and the <allocation-specifier> is omitted,
otherwise it is STATIC (see Section 2.1.5). Tables enclosed in blocks inherit
the allocation permanence of the enclosing block.

The <table=-description> describes the contents of the table either with a
{table-type-name> (see Section 2.2) or with an <entry-specifier>. Two or wmore
tables may be declared in the same scope using the same <table-type-nawme>, and
no name conflicts of the contained items will result, provided the {table-names>
are different.

A table may either be an ordinary table, in which only the logical structure
is described {(see Section 2.1.2.3) or a specified table, in which the detailed
physical layout of the table is described (see Section 2.1.2.4}.

A <structure-specifier> is used to specify the representation of entries in
a dimensioned table (see Section 2.1.2.2).

The <table-preset>, if present, specifies initial values for the table
components. For <{table-descriptions> containing an <entry-specifier> rather
than a <table-type-name>, the <table-preset> is part of the <entry-specifier>
(see Section 2.1.2.3 and 2.1.2.4).

22

Downloaded from http://www.everyspec.com

MIL-STD=-1589C (USAF)
6 July 1984

Constraints:
_—

Only tables having STATIC allocation (explicitly or by default) way contain
a <table-preset>.

Tables that are {formal-input-parameters> or <formal-output-parameters>
(see Section 3.3) must not contain an {allocation-specifier> or <table-preset>.

A <table-declaration> within a block must not contain an <allocation-
specifier>.

If a <table-declaration> contains a <dimension-list> and its <table-
description> consists of a {table-type-name>, the referenced table type must not
be dimensioned.

A <structure-specifier> in an undimensioned table is prohibited.

Items in tables declared with a {table-type-name> can be accessed only by
using pointers,

2+1.2.1 TABLE DIMENSION LISTS

Syntax:
{dimension-list> :t= (<dimension>,...)
{dimension> ::= [<lower~bound-option>]

{upper-bound>

<lower-bound-cption> 1tz <{lower-bound> :

<lower=bound> :i= <compile-time-integer-formula> (5.1.1)
i <compile-time=-status-formula> {(5.4)
<upper-~bound> $i= <compile-time-integer-formulad {5.1.1)
i <compile-time-status-formula) (5.4)
Semantics;

A <dimension-list> specifies that a table is an array. Each <dimension>
specifies the range of values for that dimension. If the <lower=bound> is
omitted, it defaults to zero if the <upper-bound> is an integer; if the <upper-
bound> is a status value, it defaults to the first <status=-constant> in the
status type of the <upper-bound>.

23

rom http://www.everyspec.com

MIL-STD-1589C (USAF)
6 July 1984

A <dimension> of * that appears with a <{formal-input-paraumeter> or <forual-
output-parameter> means the bounds will be determined from the actual parameter
on each invoecation. (Note that in accordance with Sections 6.3.9 and 6.1,
bounds of ¥ dimensions range from O to NN-1, where NN is the number of elements
in the corresponding dimension of the actual parameter, regardless of what the
lower and upper bounds values are for the actual parameter or whether the bound
has an integer or status type.)

The type of a <dimension> with a status <upper-bound> is the type of the
<upper-bound>. Otherwise the type is S IMPLINTSIZE(MINSIZE(maxbound)) where
maxbound is MAXTABLESIZE for * dimensions and the bound with the greatest
magnitude for numeric bounds.

Constraints:
Only status types with default representations may be used in <{diwmensions>.

The {lower-bound> must be less than or egual to the <upper-bound>.

The <lower-=bound> and <upper-bound> must both be status foraulas of the
same type or both be integer formulas.

The maximum number of <{dimensiocns> is seven.

A <dimension> of * may appear only in the <{declaration> of a table <formal-
input-parameter> or {formal-cutput-parameter>,

If any <dimensicn> of a table <{formal-input-parameter> or <{formal-output-
parameter> is specified as %, they all musf be specified as ¥,

The numpber of words occupied by a table must not exceed MAXTABLESIZE.

If either bound is a <status-constant> whose type is ambiguous (i.e. the
<{atatus-constant> belongs to more than one status type and 1is not explicitly
disambiguated by a <{status-conversion> -~ see Section 7.0}, then the other bound
must have an independently determinable status type.
2.1.2.2 TABLE STRUCTURE
Syntax:

{structure-specifier> s:= PARALLEL
i T {<bits-per-entry>]

{bits-per-entry> 11z <{compile-time-integer-formula> (5.1.1)

24

Downloaded from http://www.everyspec.com .,

MIL-STD-1589C (USAF)
6 July 1984

. Semantics:
—_—

Dimensioned tables can have a parallel or serial structure. In addition, a
serial table may be tightly structured. The <structure-specifier> specifies
the table structure.

A <structure-specifier> PARALLEL indicates parallel structure. For tables
with parallel structure, the first word {(word 0) of each entry 1is allocated
consecutively, then word one, etc. An omitted <{structure-specifier> or one with
T indicates serial structure. For tables with a serial structure, all words of
the first entry are allocated consecutlively, then all words of the next entry,
ete. Entries in both parallel and serial tables are arranged such that the
rightmost indices vary fastest, from the lower bound to the upper bound.

A <structure-specifier> of T indicates tight structure (in addition to
serial structure). Tight structure defines the allocation of storage between
entries in a dimensioned (ordinary or specified) table, whereas packing (see

. Section 2.1.2.3) defines the allocation of storage within an entry of an
ordinary table. Tight structure indicates that multiple entries of a

dimensioned table are to be stored within a single word such that no entry
¢rosses a word boundary. CBits=-per-entry> specifies the number of bits each
entry is to ocecupy. If it is omitted, it will default to the winimum number of
bita needed to store the entry.

Entries in tightly-structured tables are right-justified in the bits
allotted. Items in an entry of an ordinary tight-structured table are right-
. Justified within the bits allotted for the entry.

Entries in tables without a <{structure-specifier> of T shall not share a
word.

Constraints:
—_——nes

{Bits-per-entry> must be equal to or greater than the minimum number of bits
. needed to store the entry.

The {compile~time-integer-formula> must not be an <{integer-primary> of the
form <integer-conversion> (<formula>).

The explicit or default value of <bits-per-entry> wmust be less than or eyual
to BITSINWORD.

Items in a parallel table must not cross word boundaries.

Downloaded from http://www.everyspec.com

MIL-STD-1589C (USAF)
6 July 1984

2.1.,2.3 ORDINARY TASLE ENTRIES
Syntax:

<ordinary-entry-

apecifier> s:= [<packing-specifier>]
{item-type-description> (2.1.1)
[<table-preset>] ; (2.1.6)

[<packing-specifier>]
[<table-preset>] ; (2.1.6)
<ordinary-table-body>

N

<{packing-specifier>
I M

D

[
.o
il

{ordinary-table-body> {ordinary-table-item-declaration>

BEGIN
{ordinary-table-optiona’>...
END

{ordinary=-table-item=-

declaration> s:= ITEM <table-itew-nawe’>
<item-type-description> (2.1.1)
[<packing-specifier>]
(<table-preset>] ; {(2.1.6)
{table-item-name> t:= <name> (8.2.1)

{ordinary-table-options> : {ordinary-table-item«declaration>

! <null-declaration> (2.7)
Semantics:

An <ordinary-entry-specifier> is used to specify the contents of an entry of
an ordinary table.

Wo allocation order is implied by the order of iteuws in the <ordinary-table-
body> unless the <ordinary.table-body> contains an <order-directive>. If an
<order-directive> is not in effect, <ordinary-table-options> will be reordered,
if neceasary, to reduce the storage occupied by an entry, consistent with the
{packing-specifier>, Tables having the same type will have the same
representation.

26

7 Downloaded from http://www.everyspec.com .

MIL-STD-1589C (USAF)

6 July 1984
The <packing-specifier> specifies the density with which items are allocated
Wwithin an entry. The following three degrees of packing can be specified:

1. N indicates that the items are not packed. Ho items share a word.

2. M indicates a density of packing that can be between N and D, The
exact meaning is implementation-dependent and is specified to be an
effective compromise between Space usage and accessing ease.

3. D 1indicates dense packing. Ttems are allocated adjacent bits in a
word with the following exceptions:

a. Non-character items one word or longer start on a word
boundary. Shorter non-character items do not cross word
boundaries.

b. Each byte of a character item which crosses a word boundary

must be allocated on a byte boundary. An implementation may

. (but need not) allocate the bytes of other character items on
byte boundaries.

A <packing-specifier> preceding an <ordinary-table-body> in an {ordinary-
entry-specifier> applies to all items in the {ordinary-table-body> that do not
themselves include a <{packing=-specifier> in their declaration.

Default packing for a tightly-structured table (see Seection 2.1.2.2) is D;

. for all other tables, it is N.

The value of unallocated bits in an {ordinary-entry-specifier)> is
implementaticon-dependent.

The <table-preset>, if present, specifies initial values for the table
entries.

. Constraints;:

Only tables having STATIC allocation (impliecitly or explicitly) may contain
a <table-preset>.

Declaration of table {formal-input-parameters> or {formal-output-parameters>
(see Section 3.3) must not contain {table-presets>.

Iir a <table-preset> precedes the <ordinary-table-body>», none of the
<ordinary-table-item-declarations® in the {ordinary-table-body> can contain a
{table-preset>.

An ordinary-entry-specifier> used in a {table-type-declaration> (see
Section 2.2) must not contain a <table=preset>.

An <ordinary-table-body> must contain at least one <ordinary-table-item-
declaration>.

MIL=-STD=1589C {USAF)
6 July 1984

A <packing-specifier>

Downloaded from http://www.everyspec.com

if the table entry contains only one item.

The nunmber of words

MAXBITS/BITSINWORD.

2.1.2.,4 3PECIFIED TABLE
Syntax:

{specified-entry-
specifier>

{words-per-entry>

<entry-size’>

{specified=-item=-
description>
{location-specifier>

<starting-bit>

{starting-word>

<specified-table-body>

{specified=-table-item-
declaration>

ENTRIES

1= <words-per-entry>
{gspecified-item-description>
[{table-preset>] ;

{words-per-entry>
{<table-preset>] ;
{specified-table-body>

t1:= W [<entry-size>]

v

itz <compile-time-integer-formula>
::= <Kitem-type-description> POS
(<location-specifier>)

11z <starting-bit> ,
<{starting-word>

t:= <compile-time-integer-formula>
#*
11z <compile-time-integer-foruula>

<{specified-table-item-declaration>

BEGIN
{specified-table-options>...
END

:t= ITEM <table-item-name>
<gpecified-item-description>
[<table-preset>] ;

28

of N is permitted in a tightly-structured table only

allocated for a table entry iust not

(2.1.6)

(2.1.6)

(5.1.1})

(2.1.1)

{5:1.1)

(5.1.1)

{(2.1.2.3)
{2.1.6)

Downloaded from http://www.everyspec.com

MIL-STD-1589C {(USAF)
6 July 1984

<specified-table-
options> it= <specified-table-iteum-declaration>

i <null-declaration> (2.7)

Semantics:
—

A <{specified-entry-specifier> is used to specify the contents of an entry of
a specified table.

{Words-per-entry> specifies the size of (i.e, number of words in) each entry
in the table. <Words-per-entry> containing a W indicates a fixed-length-entry
specified table whereas V indicates a variable-length-entry specified table. 1In
a fixed-length-entry specified table, <entry-size> (if present) specifiies the
number of words allecated to each entry in the table. In a tightly-structured
table (in which <entry-size> must be omitted), the size of the entry is
determined from the <{structure-specifier>. 1In a variable-length-entry specified
table, each eantry is allocated one word.

The <location-specifier> specifies the physical location of the item from
the start of the entry. <(Starting-word> indicates at which word of the entry,
starting from zero, the iteu is to start, and <{starting-bit> indicates at which
bit in the word, starting from zero at the leftmost part of the word, the item
is to start, In the case of entries in tightly structured tables, {starting-
bit> is considered to be relative to the start of the entry. 4 <starting-bit>
of * indicates that the item should occupy the same amount of storage and be
aligned in the same way it would if it were allocated outside a table, in order
to ensure efficient access to the item. These rules apply to both fixed-
length-entry and to variable~length-entry specified tables. Consequently, in a
variable-length-entry table, reference to an item with subseript NN will
reference that item relative to the start of the NNth entry, where each entry is
considered to be one word long (i.e., a subscript of NN does not refer to the
NNth logical entry in that table). It is entirely up to the programmer to keep
track of the actual length of logical entries in such tables.

The <table-preset>, if present, specifies initial values for the table
entries,

The value of unallocated bits in a <{specified-table-entry> is
implementation-dependent.

Constraints:

<Entry-size> wmust be omitted on tightly-structured tables and nust be
present otherwise.

<Entry-size> must be greater than zero and less than or equal to
MAXBITS/BITSINWORD.

(Starting-word> must be non-negative. For items in tables with entry sizes
specified by <entry-size>, {starting-word> plus number of words occupied by the

29

rom http://www.everyspec.com

MIL-STD~1589C (USAF)
6 July 1984

item rmust not exceed <entry-size>., For tightly structured tables <{starting-
word> must be zero.

{Starting-bit> must be non-negative and wust not cause item position to
violate other positioning constraints. For non-tightly structured tables it
must also be less than BITSINWORD. For tightly structured tables <{starting-bit>
plus number of bits occupied by the item must not exceed <bits-per-entry’>.

Only tables having STATIC allocation {implicitly or explicitly) may contain
a <table-preset>.

Tables that are <formal-input-parameters> or <formal-ocutput-parameters> (see
Section 3.3} must not contain a <{table-preset>.

If a <table-preset> precedes the <specified-table-body>, none of the
<specified~table-item~-declarations®> in the <{specified-table-body> can contain a
{table-preset>. If any part of an item in a <specified-table-body> overlaps any
part of another item in the table body, conly one of the items can be preset.

A <(specified-entry-specifier> used in a <table-type-declaration> (see
Section 2.2) must not contain a <{table-preset>.

A <specified-table-body> must contain at least one <{specified-table-iten-
declaration>.

Non-character items whose size is one word or less cannot cross a word
boundary. Character items, regardless of length, way start on any byte
boundary, 1i.e., any value of the machine parameter BYTEPOS. Any <starting-bit>
value is permitted for character items that do not ¢rc¢ss word boundaries.

An implementation may restriect legal <starting-bit> values for pointer items
that are initialized.

Variable-length-entry specified tables mwust contain a <{3specified-table-
body>, and they cannot contain <table-presets> or <structure-specifiers>.

2.1.3 CONSTANT DECLARATIONS
Syntax:

{constant-declaration> = CONSTANT ITEH
{constant-item=-nanme>
<{item-type-description> (
{item=-preset> ; {

N
- —
L]

[= 9
R

i CONSTANT TABLE
{constant-table-name>
(<dimension-list>] (2.1.2.1)
<table-description> (2.1.2)

30

Downloaded from http://www.everyspec.com

MIL-STD-1588C (USAF)

6 July 1984
{constant-item-name> 1:= <name> (8.2.1)
{constant-table-name> ::= <name> (8.2.1)

Senantics:

A <constant-declaration> creates an item or table whose value wust be set by
means of an <item-preset> or <table-preset> and whose value cannot be changed
during execution of a program. The value of a constant itew whose type class is
not pointer can be used in a <compile-time-formula> (see Section 5.0). The
value of a constant table or an item within a constant table may not be used in
a {compile-time-formula>.

Physical storage will be allocated for all <constant-declarations> that are
in <block=-declarations>.

The allocation permanence of all allocated <constant-declarations> is

considered to be STATIC, even if the declarations appear in a <subroutine-
definition>.

2.1.4 BLOCK DECLARATIONS

Syntax:
<{block-declaration> iz BLOCK <block-name>
[<allocation-specifier>] ; {(2.1.5)
<{block-body~-part>
i BLOCK <block-name>
[<allocation-specifier>] (2.1.5)
<block=type-name) (2.2)
[<block-preset>] ; (2.1.6)
<block-name> s:= <name> (8.2.1)
<block=body-part> 1:2 <pull-declarationy (2.7}
i <data-declaration> {(2.1)
{ BEGIN
<block-~-body-options>...
END
<{block-body-options> it= <data-declaration) {(2.1)
i <overlay-declaration> (2.6)
i <null-declaration> (2.7)
31

Downloaded from http://www.everyspec.com

MIL-STD-1589C (USAF)
6 July 1984

Semantics:

A <block-declaration> declares a group of items, tables, and other blocks
that are to be allocated in a contiguous area of storage. No allocation order
is implied by the order of the declarations within a block unless the <block-
body-part> contains an <{order-directive>. If an {order-directive> is not in
effect, <block-body-options> will be reordered, if necessary, to improve
accessibility.

The <allocation-specifier> establishes the allocation permanence of blocks
which are not enclosed in blocks. This allocation permanence is automatie if
the declaration is in a subroutine and the <allocation-specifier> is omitted,
otherwise it is STATIC {see Section 2.1.5). Blocks enclosed in blocks inherit
the allocation permanence of the enclosing block.

The <block-declaration> describes the contents of the block either with a
<block-type-name> (see Section 2.2) or with a <block-body-part>. The <block-
body-part> contains explicit declarations of all the components of the block.

The <block-preset>, if present, specifies initial values for the block
components. For <block-declarations> containing a <block=-body-part> rather than
a <block-type-name>, initial values may be specified with {block~-presets>,
<{table-presets> and <item-presets> on the components themselves.

Constraints:
Only blocks having STATIC allocation (explicitly or by default) may contain

a <block-preset> or a <{data-declaration> containing an <item-preset>, {table-
preset> or <block~preset>.

If a <constant-declaration> is in a block, the block must have STATIC
allocation {explicitly or by default).

<Data-declarations> within a block wmust not contain an <allocation-
specifier>.

Blocks that are <formal-input-parameters> or <forual-cutput-paraueters> (see
Section 3.3) must not contain an <allocation-specifier>, a <block-preset> or a
{data-declaration> with an <item-preset>, <table-preset>, or <{block-preset>.

Components of blocks declared with a <block-type-name> may be accessed only
by using pointera.

2.1.5 ALLOCATION QF DATA OBJECTS
Syntax:

<allocaticn=-specifier> stz STATIC

32

Downloaded from http://www.everyspec.com

MIL-STD=1589C (USAF)
6 July 1984

Semantics;:
e,

Allocation of storage for a data object can be STATIC or automatic. STATIC
allocation means that the data object 1is to exist throughout the entire
execution of the prograu. Automatic allocation is applicable only to data
declared within subroutines and means that the data object need only exist while
the subroutine is executing {(i.e., values are not necegsarily preserved between
calls).

STATIC is the default allocation for data not declared in subroutines and
for all data declared in <external-declarations>. STATIC allocation can be
explicitly specified both inside and outside of subroutines. Automatic is the
default allocation for data declared in subroutines (other than <external-
declarations>) and cannot be explicitly specified.

The treatment of STATIC data in a concurrent processing environment is

implementation-dependent with respect to which data, if any, are shared among
processes.

2.1.6 INITIALIZATION OF DATA OBJECTS

Syntax:
{item~preset> i:1z = <itewm-preset-value>
{item-preset-value> t1z <compile-time-formula> (5.0)
i <loc-funetion> {6.3.1)
<table-preset> itz = <table-preset=list>
<table-preset-list> ::= <default-preset-sublist>

[{default-preset-sublist> ,]
{specified-preset-sublist>,...

<{default-preset-sublist> ::= <preset=-values-option>,...

{specified-preset-

sublist> iz <preset-index-specifier>
{preset-values-option>, ...
<preset-index-specifier> ::z POS (<constant-index>,...)
<{constant-index> i:= <compile-time-integer-formula> (5.1.1)

<{compile-time-status-foruula> {5.4)

33

Downloaded from http://www.everyspec.com

MIL=-STD=1589C (USAF)
6 July 1984

{preset=-values=-option> [<item-preset-value>]

.
.
L]

{repetition-count>
(<preset-values-option>,...)

{repetition-count> <compile-time-integer-formula> (5.1.1)

..
e
u

<block-preset>

s
..
n

= <block-preset-list>

{block=-preset-list> <{block=-preset-values-option>,...

{block-preset-values-
option> :

{preset-values-cption>

0

[{ <table-preset-list> }]

[{ <block-preset-list>)]

Semantics:

Items, tables, and blocks with STATIC allocation can be given initial values
by means of <item-presets», <{table-presets>, and <block-presets>, respectively.
Furthermore, constant items and tables must be given initial values with <iten-
presets> and <{table-presets>. Initial values are values of the variables after
a twmodule has been loaded but pricr t6 any dynamic reference to the variables.
They do not imply any provision for later restoring values to the initial state.

in <item-preset> specifies an initial value for an item.

4 <table-preset> specifies a list of initial values. If the <{table-preset>
ocours on an item within an entry of a table, the <table-preset> specifies
values only for that item. If the table is dimensioned, the <table-preset> for
the item, if present, may specify a liat of values to initialize that item in
each entry of the dimensiocned table.

If the <table-preset> occurs on an entry of a table, the <{table-preset
specifies values for all items within that entry., If the table is dimensioned,
the <table-preset> apecifies values for all the items in each entry of the
dimensioned table. Assuming the entry has N items in it, the first N values 1in
the <table-preset> are initial values for the N items in the first entry of the
table (in the order in which the declarations appear), the second N values in
the <table-preset> are initial values for the N items in the second entry of the
table, ete.

Entries within a dimensioned table are normally initialized in order, the
first entry being the one with the lowest value of each dimension index, and
proceeding with the rightmost indices increasing most rapidly. This is the
procedure followed when a <default-preset-sublist> is gpecified. If a
{specified-preset-sublist> is used, initialization wusing the values in the
sublist will start with the entry whose indices are specified in the <preset-
index-specifier> and will proceed with the rightmost indices increasing most
rapidly.

34

Downloaded from http://www.everyspec.com

MIL=-3TD-1589C (USAF)
6 July 1984

A <repetition-count> can be used as a shorthand to specify the nunber of
consecutive repetitions of the sequence of {preset-values-options> enclosed in
the parentheses following the {repetition-count>.

If a value is omitted in the <table-preset>, the item corresponding to the
onitted value will remain uninitialized and cannot be given an initial value
elsewhere in the preset.

A <block-preset> is used only to initialize a block declared with a <block-
type-name>. The <block-preset-list> specifies initial values for the items,
tables and blocks contained within the block in the order of their declaration.
A parenthesized <{table-preset-list> is used to initialize a contained table and
a parenthesized <{block-preset-list> is used to initialize a contained block. An
omitted entry from the list indicates that the corresponding item, table, or
block will remain uninitialized.

Constraints:

The type of each value in an {item-preset>, <table-preset> or <block-preset>
must mateh or be implicitly converiible to the type of the data object being
initialized (see Section 7.0).

The <preset-index-specifiers> within a {table-preset> must be specified such
that no bit position is initialized more than once and the bounds of the table
are not exceeded.

The value of the <repetition-count> must not be negative.

An item must not be initialized more than once by initializing another item
that overlaps it.

The type of each <constant-index> in a <preset-index-specifier> must be
equivalent to, or be implicitly convertible to, the type of the bounds of the
corresponding dimension in the <dimension-~list)> of the declaration of the table.

The number of <constant-indices> in a <{preset-index-specifier> uust be the
same as the number of <dimensions> in the table's <dimension-list>.

The allocation permanence of the argument of a <loc-function> used as a

preset value must not be automatic; any index, if present, must be a <constant-
index>.

2.2 TYPE DECLARATIONS
Syntax:

{type-declaration> :

{item-type-declaration>
i <table~type-declaration>
i <block-type-declaration

35

Downloaded from http://www.everyspec.com

MIL-STD=-1589C (USAF)
6 July 1984

{iteu-type-declaration>

TYPE <item-type-name>
{item-type-description> ; {(2.1.1)

<{item-type-nane> {name> {8.2.1)

TYPE <table-type-name>
TABLE <table-type-specifier>

{table=-type-declaration>

{table=-type-apecifier> t:s [<dimension-list>] (2.1.2.1)
[{<structure-specifier>] (2.1.2.2)
[<like-option>]
{entry-specifier> (2.1.2)
! [<dimension-1list>] (2.1.2.1)
<table-Lype-name> ;
<{table-type-name> ::= <name> (8.2.1)
{like-option> ::s LIKE <table-type-name>
<block-type-declaration> ::= TYIPE <block-type-name>
BLOCK <block=body-part> (2.1.4)
<{block-type-name> 1:= <name> (8.2.1)

Semanticsa:

A <type-declaration> is used to describe the attributes of a data object,
except for allocation, and associate the <type-name> with the attributes. Later
{data-declarations> may allocate space for one or uwore objects with those
attributes.

An <item-type-declaration> associates the <item-type-name> with the <{item-
type-description>.

A <table-type-declaration> asscciates the <table-type-name> with the <table-
type-specifier>.

A table type is dimensioned if 1its <table-type-specifier> contains a
<dimension-list> or references a dimensioned table type (either via a <like=-
option> or in lieu of containing an <{entry-specifier>).

If a <like-option> is specified, the entry being described consists of the
items in the type namwed in the <like-option> together with the items in the
{entry-specifier>. The physical positioning of items in the <like-option>
relative to the start of the entry is fixed at the time the <like-option> type
name is declared and is not changed by its use as a <like~option>. If the table
is an ordinary table, the <packing-specifier>, if present, only applies to the
items in the <entry-specifier>, not to the items obtained from the <like-
option>. If the table is a specified table, the <words-per-entry> in the
{entry-specifier>, if present, specifies the total size of the entry including

36

Downloaded from http://www.everyspec.com

MIL-STD=-1589C (USAF)
6 July 1984

. the items obtained from the <like-option>. If the <table-type-declaration>
contains a <structure-specifier> of T, <bits-per-entry> specifies the total
number of bits the entry is to occupy including items obtained from the <like-
option>. If <bits-per-entry> is omitted it will default to the minimum number
of bits needed to store the entry, including items obtained from the <like-
option>.

The physical representation of a table type is fixed by the <{table-type-
declaration>. All objects allocated with such a type name will have the same
representation. In particular, the position of table items in a <like-option>
is not modified by the occurrence of a <packing-specifier> or <order-directive>
in the <entry-specifier>, However, unused space in the portion described by the
<{like-option> can be occupied by table items given in a packed <entry-
specifier>.

A <(block-type-declaration> associates the <block-type-name> with the <block-
body-part>.

For type matching purposes, a type name is considered to be an abbreviation
for its associated <{item-type-description>, <{table-type-specifier>, or <block-
body-part>, in any context except within a <{pointer-item-description)>.

Constraints:

The <iteu~type-description>, <table-type-specifier>, or <{block-body-part> in
a <type-declaration> must not contain an <{item-preset>, <table-preset>, or
<block-preset>.

A <block-body-part> in a <block-type-declaration> cannot contain <constante-
declarations>.

A <table-type-specifier> must not both contain a <dimension-list> and
reference a dimensioned table type (either via a <like-option> or in lieu of
containing an <entry-specifier>).

Tables may be characterized as parallel, serial, tight, ordinary, variable-
length-entry, and specified. The characterizations of the table type in a
<like-option> must be the same as those of the <table-type-declaration> in which
the <(like-cption> appears.

{Wordse-per-entry> of the <table-type-specifier> nust not specify a value
that is less than <{words-per-entry> of the type name specified in a <like=-
option>.

The (explicit or default) number of bits in an entry in a <table-type-
specifier> having tight structure must not be less than the number of bits in an
entry of the <{table-type-name> specified in a <like-option>.

A <table-type-name> must be a <name> declared in a <(table-type~declaration>.

A <block-type-name> must be a <name> declared in a <block-type-declaration.

| ;

Downloaded from http://www.everyspec.com

MIL=-STD-1589C (USAF)
6 July 1984

Note:

A <table-type-name>, <item-type-name>, or <block-type-name> must not be a
formal parameter name or an actual parameter name.

2.3 STATEMENT NAME DECLARATIONS
Syntax:

{statement-name-declaration> ::= LABEL
<{statement-name>,... ; (4.0)

Semantics:

A <statement-name-declaration> is used to explicitly declare a <{statement-
name». Ordinarily, a <{statement-name> is implicitly declared by its use in a
<label>. An explicit <statement-name-declaration>, however, must be used for
statement name <formal-input-parameters>, for statement names that are the same
as <define-names> declared in an encleosing scope, and for external <statement-
name-declarations>.

Constraints:

Each <statement-name> in a <statement-name-declaration> must either be a
{formal-input-parameter> Lo the subroutine containing the <statement-name-
declaration> or else wust be used in a <label> in the iumediate scope containing
the <statement-name-declaration> {i.e., not including nested scopes), or else
the <{statement-name-declaration> must be a <ref-gspecificaticn-choice>.

2.4 DEFINE DECLARATIONS

Syntax:

DEFINE <define-name>
<definition-part>

{define=declaration>

{define-name> {pname> (8.2.1)

[{formal-define-parameter-list>]
{define-string> ;

{definition-part>

{formal-define«parameter-

list> ::z= (<formal-define-parameter>,...)
{formal-define-parameter> ::z <letter> (B.1)
{define=-string> ::= " [<character>.,.] " (8.1)

38

Downloaded from http://www.everyspec.com

MIL-STD-1589C (USAF)
6 July 1984

Sewmanties:

A <define-declaration> 1is used to associate a name with a (possibly
parameterized)} text string, the {define-string>. The {define-atring> will be
substituted for the <{define-name> when the <define-name> is used in a <define-
call> (see Section 2.4.1).

The {formal-define-parameter-list> is used to declare <forwal-define-
parameters>. These parameters receive values from {actual-define-parameters> in
each <define-call> (see Section 2.4.1). The values are substituted in the
<define«string> wherever the {formal-define-parameteprs) are referenced.
Reference to a <formal-define-parameter) within the <{define-string> is indicated
by preceding the parameter name with an exclamation point. Such parameter
references can occur anywhere within the {define-string> and, by appropriate
Juxtaposition, can be used to create new symbols.

Within the <define-string>, the quotation wark (") and exelamation point (1)
can be used as simple characters by doubling themn. A <define-string> is
terminated by the first undoubled quotation mark, regardless of the lexical
context in which the undoubled quotation mark appears.

As with other <names>, a <define-name> is known in the scope containing its
declaration and may be redeclared in an inner scope,

The <define-string> may contain {define-calls>. Such calls will be expanded
for each substitution of the <define-string>, using the definition active in the
scope of the <define-call>.

Constraints:

A <comment> delimited by quotation marks must not occur in a <define-
declaration> between the <define-name> and the {define-string>.

Circular <define-declarations> as the result of <define-strings> containing
{define-calls> are not allowed.

The same <letter> must not appear more than once in any <formal-define-
parameter-list>.

2.4.1 DEFINE CALLS

Syntax:

<define-call> t1= <define-name> (2.4)
[<actual-define-parameter-list)]

<actual-define-parameter-
list> sis actual-define-paraueter>,,..)

39

Downloaded from http://www.everyspec.com

MIL-STD=-1589C (USAF)

6 July 1984
<actual-define-parameter> ::= [<character>...] (8.1)
i " [<character>...] " (8.1)
Semantics:

A <define-call> is used to cause textual substitution to occur. A <define-
ecall> is processed as follows:

1. The characters comprising <actual-define-parameters> are substituted
for the corresponding <{formal-define-parameters> in the {define-string>
associated with the <define-name>.

2. The resulting <define-string> is scanned from its beginning to
determine what <symbols> it contains; these <{symbols> are processed as
though they had appeared in the original text at the point of the
replaced <{define-call>.

3. Seanning of the source program continues as if the <symbols> found in
the <define-string> had occurred in the original text.

Note that the substituted source text may be found to contain <define-calls>
and these are processed in the same manner.

If an {actual~define-parameter> is omitted, a null string will be
substituted for the <formal-define-parameter>. If the number of <formal-define-
parameters> exceeds the number of <actual-define-parameters>, null strings will
be substituted for the trailing <formal-define-parameters>.

If the first non-blank character of the <actual-define-parameter> is not a
quotation mark, the parameter is the entire string of characters starting with
this character and ending at, but not including, either (1) the first right
parenthesis that is not balanced by a left parenthesis that is part of the
{actual-define-paraweter>, or {2} the first coumma that is not between such
balanced parentheses. All characters within the parameter, including guotation
marks, represent themselves,

If the first non-blank character of the <actual-define-parameter> is a
quotation mark, the parameter consists of all characters enclosed by this
quotation mark and the next succeeding undoubled quotation mark. Characters
within the parameter represent themselves except doubled quotation marks (")
which represent a single guotation mark (™).

<Define~calls> are not recognized in <comments> and <character-literals>.

30

Downloaded from http://www.everyspec.com

MIL-STD-1589C (USAF)
6 July 1984

Constraints:
—_— 2

The <actual-define-parameter-list> must not be omitted if the corresponding
<define-declaration> contains a {formal-define-parameter-1ist>.

The number of actual-define-parametears> nust not be greater than the
corresponding number of {formal-define<parameters>.

A <define-call> cannot be Juxtaposed with surrounding symbols so as to
create new symbols after substitution. 1In particular, the resulting <define-
string> produced by a <define-call> must not end with an incomplete bracketed
symbol (<character-literal>, <bit-literal>, <comment>, {define-string>, or
quoted <actual-define-parameter>).

A <define-call> must not be used as the <nampe> being declared within a
declaration.

A <define-call> must not be used as a {formal-input-parameter?> or <formal-
cutput-parameter> within a <{procedure-heading> or {function=heading>.

Note:

The define-listing directives (see Section 3.7.2) allow programmer control
over whether the source program listing contains the expanded string, the define
invocation, or .both, for {define-=calls>,

Examples:

DEFINE FOO(A} "BAZ 'AFAZ 1A";
DEFINE BAR "HELLO";

DEFINE BARFAZ "GOODBYE";
DEFINE HELLOFAZ "NOT USED";
FOO(BAR}

The result of the <{define-call>, FQQ(BAR), after substituting for the formal
parameter 1A is BAZ BARFAZ BAR, and after rescanning this string, the final
result is BAZ GOQDEYE HELLO.

DEFINE MAKEDEF(N, S) "DEFINE !N "nrignnm,
MAKEDEF (NEW, HELLO);

The result is DEFINE NEW "HELLO"; , i.e., a new <define-declaration>.

L

Downloaded from http://www.everyspec.com

MIL-STD-1589C (USAF)
6 July 1984

2.5 EXTERNAL DECLARATIONS .

Syntax:
<{external-declaration> ::= <def-specification> {2.5.1)
i <pef-specification> {2.5.2)
Semantics:

{External-declarations> declare <{names> that are potentially known in other
<{modules> of the <{complete-program». Such names are said to be external.

Constraint:

Formal paraumeter names cannot be declared external.

2,5.1 DEF SPECIFICATIONS
Syntax:

{simple-def>

{compound-def> .
DEF

{def-gpecification>

o
LT
n

{gimple=def> HH
{def.specification-choice>
<compound-def> s:= DEF BEGIN
{def-gpecification-choice>...
END
{def-specification-choice> ::= <null-declaration> (2.7) .
| <data-declaration> (2.1)

i <def-block-instantiation>

| <statement-name-declaration> (2.3)

BLOCK INSTANCE
<{block-name> ; (z.1.4)

{def-block-instantiation>

Semanties:

<Def-specifications> enable data objects to be declared that are potentially
available via <{ref-specifications> and/or <compool-directives> for use in other)
<{modules>., Physical storage will be allocated for these objects. .

42

Downloaded from http://www.everyspec.com

MIL-STD=1589C (USAF)
6 July 19384

Either a <{def-block-instantiation> or a <block-declaration> may be used in a
<def-specification> to c¢create a block with external scope. However, in order
for a {def-block-instantiation> to be meaningful, a <ref-specification>
containing a <block-declaration> having the same <block-name> must exist, either
in that <module> or in a <compeol-module> that is referenced via a <{compoola
directive>. Preset information used in the creation of a block declared with a
{def-block-instantiation> will be obtained from the corresponding <ref-
specification>.

A <statement-name-declaration> in a {def-specification> makes the addresses
of the designated statements available as linkage information in the environment
of the {complete~program> but does not make these names available as targets of
out-of-scope GOTO statements (see Section 4.7).

<Data-declarations> in {def=-specification-choices> have STATIC allocation,
whether or not explicitly specified.

Constraints:
bbb ldnidd g

A {data-declaration) in a {def-specification> and a corresponding
declaration in a <ref-specification> must agree in nawe, type, and all
attributes. However, a compiler will perform this check across <module>
boundaries only if a connection is established between the <modules> via a
{compool-directive>.

The <data-declaration> in a <{def-specification> cannot be a <constant-
declaration>. (This constraint does not prevent {eonstant-declarations> from
appearing in <block-declarations> in {def-specifications>.)

2.5.2 REF SPECIFICATIONS
Syntax:

{ref-specification>

<simple-ref>

{compound-ref>

<(simple-ref> :

REF
<ref-gpecification-choice>

{eompound-ref> ::= REF BEGIN
{ref-specification-choice>...
END

43

Downloaded from http://www.everyspec.com

MIL-3TD-1589C (USAF}

6 July 1984
(ref-gpecification-choice> ::=z <null-declaration® (2.7)
! <data-declaration> (2.1)
i <subroutine-declaration> {3.0)

i <statement-naue-declaration> (2.3)
Semantics:

A <ref-specification> enables a <module> to reference a <name> whose <def-
specification> is in another <{module>.

Physical storage for external names occurs in the <module> containing the
{def-gpecification> and not in the <module> containing the <{ref-specification>.

A <ref.specification> for a <name> may appear in a <compool-module> and the
correspending DEF in another <module>. In that case, the <name> will be
available for wuse in any other module of the <complete-program>, provided that
the referencing module has the appropriate <compool-directive’. The compiler
will enforce the requirement that the DEF and the REF specifications agree,
provided the <module> c¢ontaining the DEF has the appropriate <compool-
directive>. Alternatively, the <ref-gpecification> way appear in the accessing
<{module> directly instead of in a compool (bypassing the compool entirely), but
in this case it will be beyond the compiler's ability to check for coupatibility
between the DEF and the REF aspecifications. When <refa-specifications> are used
outside of compools to gain access to external names, the prograumer is entirely
responsible for the correct usage of those names.

For <{data-declarations> in a <def-specification> that is in a <compool-
module>, no <ref-gpecification> is necessary if the accessing wmodule has a
<{compool-directive> that causes that data to be imported (see Section 9,1).

{Data-declarations> in <ref-specification-choices> have STATIC alloccation,
whether or not explicitly specified.

Constraints:

For every <data-declaration> in a <ref-specification>, there must exist a
corresponding declaration in a <def-specification>. For every <subroutine-
declaration> in a <ref-specification>, there uust exist in sowe <{procedure-
module> or <main-program-module> a corresponding <{subroutine=-definition>
preceded by DEF.

In a <ref-specification>, presets are illegal in <item-declarationa’> and
{table-declarations> and are optional in <block-declarations>. A {ref=-
specification> that contains presets can be used only in conjunction with a
{def-block-instantiation>.

44

Downloaded from http://www.everyspec.com

MIL-STD-1589C (USAF)

6 July 1984

A <ddata-declaration> in a <ref-specification> cannot be a <constant-

declaration>. (This constraint does not prevent <constant-declarations>

appearing in <block-declarations> in <ref-specifications>).

2.6 OVERLAY DECLARATIONS

Syntax:

OVERLAY
[<absolute-address>]
{overlay=-expression> ;

{overlay-declaration)>

{abaolute-address)> t= PO3 (<overlay-address>) :

{overlay-address> <compile~time-integer-fornulad> (5.1.1)

{overlay-expression) {overlay-string>:...

.
..
1]

{overlay-atring> t:= <overlay-elewent>,...
{overlay-element> ;1= <spacer>
i <data-nane>
i { <overlay-expression>)
<spacer> ii= W <compile-time-integer«formula> (5.1.1)
<{data-name> :1= <item-name> (2.1.1)
i <table-name> (2.1.2)
i <block-name> (2.1.4)

Semantics;

An <overlay-declaration> is used to specify any or all of the following:

1) that data objects are to have a specific allocation order

from

2) that certain data objects are to ocoupy the same wemory

locations as other data objects

3) that certain data objects are to be allocated at =z particular absolute

nemnory location

The <{overlay-eleuents> in an <overlay-string> are allocated memory locations
in the order of their appearance in the string. The memory locations allocated
to the elements of an <overlay-string> that appears to the left of a colon in an

<overlay-expression> are overlayed with the space allocated to the =elements

the <overlay-string> that appears to the right of the colon.

45

of

Downloaded from http://www.everyspec.com

MIL-STD-1589C (USAF)
6 July 1984

The <overlay-address> specifies an absolute mewory location at which
allocation of the <{overlay-expression> begins. The meaning of an <overlay=-
address> is implementation-dependent and machine dependent.

4 <spacer> in an <overlay-string> specifies a number of words to be skipped
during allceation,

Constraints:

The allocation permanence of all data objects in an <overlay-declaration>
must be the same (i.e., all STATIC or all automatic).

An {overlay-declaration> within a <block-declaration> or <block-type=-
declaration> must not reference data names declared outside the block or block
type or within nested blocks.

An <overlay-declaration> outside a <block-declaration> or <block-type-
declaration> must not reference data names declared within a block or block
type.

An <overlay-declaration> within a <block-declaration> or <block-type-
declaration> must not include an <absolute-address>.

A <block-declaration> or <block-type-declaration> must not include an
<overlay-declaration> if an <order-directive> is in effect for the block or
block type.

Declarations for all <{data-names> in an <overlay=-declaration> must precede
the <overlay-declaration’>, and all must be in the same scope.

<{Qverlay-declarations> cannot be used to specify more than one physical
location to any data object.

Names of formal parameters cannot be used in <overlay-declarations>.

If an <overlay-address> is specified, all <{data-names> used in the <overlay-
expression> must have an (explicit or default) allocation permanence of STATIC.

Note:

A <data-name> in an <overlay-declaration> cannct be declared in a <constant-
declaration>.
2.7 NULL DECLARATIONS
Syntax:
<null-declaration> HEE T

1 BEGIN END

46

Downloaded from http://www.everyspec.com

MIL-STD-1589C (USAF)
6 July 1984

. Semantics:

A <null-declaration> has no semantic effect.

C v

Downloaded from http://www.everyspec.com

MIL-STD-1589C (USAF)

6 July 1984
3.0 PROCEDURES AND FUNCTIONS
Syntax:
<{subroutine-declaration> 11z <procedure~declaration> (3.1)
{ <function-declaration> {3.2)
<subroutine-definition> ::= <{procedure-definition> (3.1)
! <function-definitiocn> (3.2)
Semantics:

Subroutines describe algorithms that may be executed from more than one
place in a <complete-program>. A subroutine is either a procedure, which is
invoked by a <procedure-call-statement>, or a function, which is invoked by a
{function-call>.

A <subroutine-definition> contains the executable code for the subroutine,
in addition to declarations for all local data and formal parameters, as well as
definitions of any nested subroutines. A <subroutine-definition> 1s said to
define the subroutine.

A <subroutine-declaration», on the other hand, is said to declare the
subroutine. A <subroutine-declaration> contains the heading of the subroutine
and <declarations® for the formal parameters, but it contains no executable
code. A <subroutine-declaration> is required in a <ref-specification> for each
subroutine that is invoked in a module other than the module containing its
definition (see Section 2.5). A <subroutine-declaration> is also required in
two other situations: (1) when a subroutine name is declared as a formal
parameter (see Section 3.3), and (2) when the name of the subroutine is the same
as a <define-name> in an enclosing scope. It is not necessary to provide a
<subroutine-declaration> if the subroutine is invoked only in the <module> where
it is defined and if its name is not passed as a parameter or used in an
enclosing scope as a {define-name>.

Constraints:

The <procedure-heading> or <function-heading> of a <{subroutine-declaration>
and that of the corresponding <subroutine-definition> must have identical
attributes, and the parameters (both input and output) must agree in number,
type, and order. (This constraint will be enforced only when the declaration is
known in the scope of the definition.} Also, the subroutine name in the
declaration and definition must be the same (unless the <subroutine-declaration>
is for a formal parameter).

L8

Downloaded from http://www.everyspec.com

MIL-3TD-1589C (USAF)

6 July 1984
3.1 PROCEDURES
Syntax:
{procedure-declaration® it= <procedure-heading> ;
<declaration> {2.0)
<procedure-definition> i1z <fprocedure-heading> ;
{procedure-body>
<{procedure-heading> ::= PROC
{procedure-name>
[<subroutine-attribute>]
(<forwal-parameter-list>] (3.3)
{subroutine-attribute> iz REC
i RENT
{procedure-name> 11z <named (8.2.1)
<{procedure-body> iz <{subroutine-body>
<subroutine-body> :i1= <statement> {(4.0)
t BEGIN [<deeclaration>...] (2.0)
{statewent>... (4.0)
[<subroutine-definition>...] {3.0)
[(<label>...] END (4.0)

Semantics:

The <procedure-heading> in a <{procedure-declaration> may contain a <formal-
parameter-list>, which specifies the names that are used in the {procedure-body>
to refer to the corresponding arguments supplied by each call of the procedure.
The syntax, semantics, and constraints for a procedure's <formal-parameter-list>
are the same as for a function's <{formal-parameter-list>, and are presented in
Section 3.3.

The differences between a <procedure-declaration> and a <{procedure-
definition> are described in Section 3.0.

A <subroutine-attribute> of REC indicates that the subroutine is potentially
recursive, i,e., that at run time, an invocation of the subroutine may be

dynamieally nested within another invocation of it. If REC is present, physical

allocation of locally-declared automatic data will occur dynamically. The data
will be allocated and deallocated when the subroutine is entered and exited,
respectively. This assures that separate copies of the local data will exist
for each successive call in the recursive chain. Locally-declared STATIC data,
however, will be allocatad once, and the same storage will be used for all calls
of that subroutine throughout the {complete-program>.

49

Downloaded from http://www.everyspec.com

MIL-STD=-1589C (USAF)
6 July 1984

A <subroutine-attribute> of RENT indicates that the subroutine is re-entrant
and may therefore be executed concurrently in a concurrent processing
environment. A recursive subroutine is also re-entrant.

If execution of the <{procedure-body> is completed without executing a RETURN
statement, an ABORT statement, or a GOTO statement whose target is the name of a
formal parameter, an implicit RETURN statement 1is executed.

Constraints:

A <procedure-declaration> can contain no <declarations> other than those for
the procedure's formal parameters. <Declarations> of local data appear only in
the procedure's definition.

A procedure must not be invoked recursively if it is not declared REC.

A procedure must not be invoked re-entrantly if it is not declared RENT or
REC.

4 <subroutine-body> must contain at least one non-null <statement> (e.g.,
RETURN) .

3.2 FUNCTIONS

Syntax:
<function-declaration> ::= <function-heading> ;
{declaration> (2.0}
{function-definition> 112 <{function-heading> ;
{function-body>
{function=-heading> ::= PROC <function-name>
[<subroutine-attribute>] (3.1)
{<formal-parameter-list>] {3.3)
{item-type-description> (2.1.1)
<{function-name> ::z <name> (8.2.1)
<function-body> ::= <subroutine=body> (3.1)
Semantics:

The differences between a <{function-declaration> and a <function=definition>
are described in Section 3.0.

The <item-type-description> specifies the type of the return value of the
function. Within the body of the function, the name of the function may be
assigned to as a variable in an assignment statement. When the function is
exited, the most recent value assigned to the {function-name> is wused as the

50

Downloaded from http://www.everyspec.com

MIL=-STD=-1589C (USAF)
6 July 1984

value of the function. The return value i3 considered to be allocataed as
automatic storage (see Section 2.1.5).

Use of the <function-name> in a <formula> within the body of the function is
a recursive invocation of the function. Within the body of the Ffunection, the
{function-nauwe> may also be used as an {actual-input-parameter> in a subroutine
call when the corresponding {formal-input-parameter® is a <function-name> (see
3ection 3.3).

The <function-heading> in a <{function-declaration> or {function-definition)
may contain a <{formal-parameter-list>, which specifies the names that are used
in the <function-body> to refer to the corresponding arguments supplied by each
call of the function. The syntax, semantics, and constraints for a function's
(formal-parameter-1list> are the same as for a procedurs's <{formal-parameter-
list>, and are presented in Section 3.3.

The inclusion of an {item-type-description® in the heading of a subroutine
indicates that the subroutine is a function.

The <subroutine-attributes> of REC and RENT apply to functions in the same
way as for procedures (see Section 3.1).

If execution of the <function-body> is completed without axecuting a RETURN
statement, an ABORT statement, or a GOTO statement whose target is the name of a
formal parameter, an implicit RETURN stateuent 1s executed.

Constraints:
Bedbbttdelial LA

The <function-name> may not be used as an {actual-cutput-parameter>.
The <function-name> is not declarable as a <name> within the function body.

A <function-declaration> can contain no <declarations> other than those for
the function's formal parameters. <Declarations> of local data appear only in
the function's definition.

A function must not be invoked recursively if it is not declared REC.

A function must not be invoked re-entrantly if it is not declared RENT or
REC.

The <function-name> must be assigned a value before the function is exited
via an explicit or implicit RETURN statement.

3.3 PARAMETERS OF PROCEDURES AND FUNCTIONS

Syntax:

{formal-parameter-list> ::= { [<formal-input-parameter),...}
[: <formal-output-parameter>,... 1)

51

Downloaded from http://www.everyspec.com

MIL=-STD-1589C (USAF)
6 July 1984

{forwal=-input-parameter> ::= [<{parameter-binding>]
{input~parameter-name>

<formal-cutput-parameter>::= [<parameter=binding>]
<output-parameter-name>

<parameter-binding> s+= BYVAL
{ BYREF
i BYRES
{input-parameter-name> ::= <data-name> (2.6)

<{statement-name> (4.0)

<subroutine-nanme>

{output-parameter-name> : {data-name> {2.6)

{subroutine-name>

<procedure-nane>

<function-name> (3.2)

Semantics:

Parameters peruit subroutines to have locally-declared <names> that
correspond to entities whose values can be different for different calls.

<Formal-input-paraneters> and <formal-output-parameters> constitute the
formal parameters of the subroutine. When the subroutine is invoked, the formal
parameters are assoclated with a corresponding list of actual paraumeters
supplied in the subroutine call (see Section 4.5).

<{Formal-input-parameters> transfer values into the <subroutine-body> from
the corresponding {actual-input-parameters>. {Formal-output-parameters>
transfer values into the <subroutine-body> and alsc transfer values from the
<{subroutine-body> back to the corresponding <actual-cutput-parameters>.

If a formal parameter is a <{data-name> it may be bound to the corresponding
actual parameter in any of the following ways: by reference, by value, by
result, or by value-result.

Reference binding means that the actual parameter and the formal parameter
denote the same physical object. Any change in the value of the formal
paraweter entails an immediate change in the value of the actual parameter and
vice=versa.

Value-result binding means that the formal parameter denotes a separate data
object, assigned the value of the actual parameter on entry to the subroutine,
and used to assign its value to the actual parameter on normal exit frowm the

52

Downloaded from http://www.everyspec.com

MIL~STD-1589C (USAF}

6 July 1984
. subroutine. Since it is a separate data object there is no interaction between
it and the actual parameter during execution of the subroutine.

Value binding is similar except the actual parameter is not modified on exit
from the subroutine,

Result binding leaves the value of the forwal paraueter undefined on entry
to the subroutine but is otherwise like value-result binding.

Standard rules for types of binding indicate the effect normally required:

Reference binding shall be used for blocks, tables, and for
entries of all except tight tables.

Value binding shall be used for input itews and tight
table entries.

. Value-result binding shall be used for output items and tight
table entries.

Explicit <parameter-binding> specification affects these rules as follows:

BYREF - reference binding is required. If the actual parameter cannot bhe
passed by reference {such as a badly aligned table iten}, the
compiler shall allocate a temporary variable, use value or value-
result binding as appropriate to pass the parameter between its

. actual location and the temporary variable, and pass the temporary
variable by reference to the subroutine.

BYVAL = reference binding is prohibited. The parameter shall be passed by
value or value-result as appropriate.,

BYRES = result binding is required.

. An implementation may optimize ©binding methods provided it guarantees
required results both in parameters passed and in side effects, if any.

If the <formal-input-parameter) is a {statement-name>, the semantics are as
described in Section 4.7.

If the <formal-input-parameter> is a <subroutine-name> the <name> of the
corresponding actual parameter determines which <subroutine-definition> to
associate with the formal paraueter's <subroutine-declaration> on each call. A
call to that subroutine via the formal parameter <name> will be treated as if
the corresponding actual parameter subroutine had been called from the same
environment in which <subroutine-name> was originally specified as an <actual-
input-parameter>.

The order of evaluation of actual parameters is unspecified.

o .

Downloaded from http://www.everyspec.com

MIL-STD=-1589C (USAF)
6 July 1984

In the absence of an <interference-directive>, no interference is assumed
within the subroutine between actual parameter data and formal table or Dblock
parameters, or between actual parameters and variables accessed directly from
within the subroutine.

Constraints:
The sawme name must not appear uore than once in any <{formal-parameter-list>.

A <formal-input-parameter> cannot be used in a context in which its value
can be altered (e=.g., as a target in an <assignuent-statement>).

Names of data declared as foruwal parameters must not be used in <overlay-
declarations>.

Declarations of formal parameters wust not contain <allocation-specifiers>
or presets.

{External-declarations> of formal parameters are not permitted.

The {subroutine-definition> (and <subroutine-declaration>, 1if one is
present) must contain an explicit <declaration> for each <nawe> in the <foruwal-
parameter-=list>.

For any subroutine call, the number of formal and actual input parameters
must be the same, and the number of formal and actual output parameters must be
the sanme.

Declarations of formal parameters cannot be <constant-declarations> or
{type-declarations>.

For all table parameters, the types of the formal parameters and those of
the corresponding actual parameters must be equivalent (see Section 7.0). This
requirement extends to the types and associated attributes of all components,
and their allccation order. For all item parameters, the rules for implicit
attribute conversion apply (see Section 7.0). Block parameters match under the
following conditions: (1) the components must have equivalent types and must be
in the same textual order; (2) an !'ORDER directive is either present in both
¢block-body-parts> or absent in both <block-body-parts>; and (3) <overlay-
declarations?> in both blocks have the same effect.

The actual parameter corresponding to a formal input parameter {statement-
name> must be a <statement-name> and wust conform to tne constraints specified
in Section 4.7 for <statement-names> used in <{goto-statements>.

The actual parameter corresponding to a formal input parameter <{subroutine-
name?> must be the name of a subroutine. Parameter types and return value types
of forwal and actual subroutines must match exactly, as described in Section 3.0
constraints.

BYRES binding must not be specified for input parameters.

54

Downloaded from http://www.everyspec.com

MIL-STb-1589C (USAF)
6 July 1984

Notes:

Throughout this specification, 'forual paraueter' refers to entities named
in a <formal-parameter-list>, but not to their components. For example, an item
declared in a formal parameter block is not a formal paraneter.

3.4 INLINE PROCEDURES AND FUNCTIONS
Syntax:

{inline-dec¢laration> 1= INLINE
<{subroutinc-name>,... ; {3.1)

Semantics:

An <{inline-declaration> causes the object code for the bodies of =ach of the
designated subroutines to be inserted at the point of every call of that
subroutine within the scope containing the <inline-declaration>. This will be
done instead of inserting code for calling a remote subroutine body.

The effect of the <inline-declaration> extends for just the name scope in
which the <inline-declaration> appears. It does not affect calls appearing in
enclosing scopes.

If any actual parameters to inline subroutines are constants, inline
expansion may cause some formulas in the <{subroutine-bodies> to become evaluable
at compile time. Compile-time evaluation of these forumulas will be performed
and any corresponding error messages will be generated as though the programmer
had written those foruulas directly. Except for the effects of conpile=time
evaluation, the semantics of inline subroutine expansion are identical to the
semantics of the norwal, remote subroutine call mechanism.

Inline subroutines may themselves contain (possibly inline) subroutine
calls, but they may not contain nested subroutine definitions.

Inline subroutine names may be used as actual parameters, but a call to the
matching formal parameter name will result in a closed rather than inline
invocation (even if the actual parameter is an inline subroutine).

Constraints:

Names of subroutines whose definitions appear in another nodule cannot be
used in <inline-declarations>.

Forwal parameters cannot be declared to be inline.

It is 1illegal to have an inline subroutine invocation of a subroutine that
is already being expanded inline.

Formal parameters of inline subroutines cannot be used in contexts where the
syntax requires a compile-time formula.

55

B
Downloaded from http://www.everyspec.com

MIL-STD=1589C (USAF)
6 July 1584

3.5 MACHINE-SPECIFIC PROCEDURES AND FUNCTIONS
Semantics:

Each coupiler implementation may provide a set of procedures and functions
that are intrinsically recognized by the compiler. These procedures and
functions shall typically encompass operations that are not directly provided by
the language. They may be implemented as subroutines or via inline code,
whichever 1s suitable. The use of inline code is particularly suitable as a
vehicle for invoking single machine instructions which are peculiar to the
target machine.

In general, a subroutine will be provided for machine instructions whose
execution would otherwise be unobtainable through the language. It is not
intended that every target machine instruction be supported as a machine-
specific procedure or function. Subroutines will, however, be provided for
machine-specific instructions whose meaning is not expressible in the language
(e.g., "load status word", "test condition code"), as well as instructions for
which a J73 subroutine could be written but which are directly implemented by
target-machine instructions (e.g., "sine", "matrix multiply®, or "rotate length-
32 bitstring", etc.). Such subroutines will be defined at system scope and
hence their names will be redefinable in inner scopes. Such subroutines Wwill be
invoked in the same way as other subroutines (see Sections 4.5 and 6.3). The
particular parameters to such subroutines are subroutine-dependent.

Implementation requirements for each such subroutine inalude specification
of the operation to be performed and of the rules for each formal parameter,
including both its JOVIAL attributes and how it is used. The coupiler shall
generate code to use the parameters and perform the specified operation.

56

Downloaded from http://www.everyspec.com

MIL-STD=-1589C (USAF}

6 July 1984
. 4,0 STATEMENTS
Syntax:
{statement> t:=2 [<label>...]
<simple-statement>
i [<label>...]
{compound-statement>
{simple~statement> 113 <assignment-statement> (4.1)
i <locp-statement> (4.2)
i <if-statement> (4.3)
i} <case-statement> (4.4)
. i <procedure-call-statenent> (4.5)
i <return-statement> (4.6)
i <goto-statement)> (4.7)
i <exit-statement> (4.8)
. i <stop-statement> {(4.9)
i <abort-statement> (4.10)
i <null-statement>
<null-statement> iz
. i BEGIN [<label>...]
END
<label> t:= <statement-name> :
<{statement-name> tiz <name> (8.2.1)
<compound-statement> t:2 BEGIN <statement>...

[<label>...] END
Semantics:

{Statements> are the means by which computational algorithms are specified.
They control the execution of the <{complete-program>.

A <compound-statement> permits a sequence of <{statements> to be used in
contexts requiring a single <{statement>.

@ .

Downloaded from http://www.everyspec.com

MIL-STD-1589C (USAF}
6 July 1984
4 <null-statement> results in no operation.
A <label> is used to attach a <statement-name> to a <statement>. A <¢label>

that is attached to the END of a <compound-statement> or <null-statement> is
treated as if a no operation <statement> followed the <{label>.

4.1 ASSIGNMENT STATEMENTS

Syntax:
<assignment-statement> ::= <variable-list> =
<formula> ; (5.0)
{variable-list> 11z <variable>,... (6.1)
Semantics:

An <assiknment-statement> causes the value of the <formula> to the right of
the equal sign to be assigned to the <variables> to the left of the equal sign.

In performing the assignuent, the <{formula> is evaluated first. Then, the
leftmost variable is evaluated and the value of the formula is assigned to that
variable. Next, the second-to-the-left variable is evaluated and the value of
the formula is assigned to it. This sequence of evaluations continues until the
list of variables is exhausted. If necessary and perumitted (see Section 7.0),
the value of the formula is implicitly converted to the type of the variable
being asasigned to. For nuperic values, the value is rounded or truncated
according to the <round-or-truncate> attribute of each variable being assigned
to {see Sections 2.1.1.2 and 2.1.1.3).

Constraints:

The type of the <formula> must match or be implicitly convertible to that of
each of the <variables> according to the rules given in Section 7.0.

411 <variables> in the <variable-list> must be of the same type class.
None of the <variables> may be <formal-input-parameters>.

Note:

Assignment semantics and constraints apply to presets (Section 2.1.6),
assignments to <control-items> in <loop-statements> (Section 4.2), and some
types of actual/formal parameter correspondence (Section 3.3).

Since the implemented precision of packed fixed point table items may be
less than the implemented precision of an unpacked item having the same fixed
type, and since rounding and truncation are performed with reapect to
implemented precision, assignment to packed table items may change the value
being assigned (see Section 7.0).

58

Downloaded from http://www.everyspec.com

MIL-STD=-1589C (USAF)
6 July 1984

. 4.2 LOOP STATEMENTS

Syntax:

<loocp-statement>

{loop-type>
{econtrolled-statement>

{while-clause)

<loop=-type>

{for-clause>

<controlled-statement> $iz <(statement>
<while-clause> itz WHILE <boolean-formula> ; (5.2.2)
<for-clause> ti= FOR <control-item>
{control-clause> ;
. {control-item> :i= <control-variable>
i <control-letter>
<{control-variable> ::= <item-name> (2.1.1)
{control-letter> 11z <{letter> (8.1)
. <control-clause> iz <initial-value>
[<continuation>]
<initial-value> 1:= <formula> (5.0)
<continuation> iz <by-or-then phrase>
[{<while-phrase>]
. ! <while-phrase>
[<by-or-then-phrase>]
<by-or-then-phrase)> ti= <by-phrase>
i <then-phrase>
<by-phrase> $:= BY <by-formula>
<by-formula> 1z <{numeric-fornmula> {(5.1)
<{then-phrase> i3z THEN <formula) (5.0)
{while-phrase» :i= WHILE <boolean-formula>> {(5.2.2)

Semantics:

A <loop-statement> provides for the iterative execution of a statement.

| s

Downloaded from http://www.everyspec.com

MIL-STD-1589C (USAF)
6 July 1984

If the <while-clause> form of the <loop-statement> is used, the <controlled-
statement> 1s executed until the value of the <boolean-formula> becomes FALSE.
The <boolean=-formula> is evaluated before each iteration.

Iif the <for-clause> form is used, the value of <control-item> determines the
number of iterations. If the <control-item> is an <item-name>, its type is as
specified in its <declaration>, and that {item-name> wmay be used for purposes
other than loop control before and after the loop. After execution of the loop
concludes, the value of the <item-name> is the last value it received in the
{loop-statement>. If the <control-item> is a <letter>, the <for-clause>
constitutes an implicit declaration of the <control-item>, and its value 1is
inaccessible prior to the start of the <loop-statement> and after the <loop-
statement> concludes. Iits type is that of the <initial-value>. Its scope is
the <loop-statement> itself; hence, another <loop-statement> may use the same
<letter> as a <control-item> (except as prohibited in Constraints) and no
conflict will result.

The actions of the <loop-statement> with a <for-clause> are as specified by
the following algorithm:

Step 1: The <initial-value> is evaluated and assigned to the
{control-item>.

Step 2: The <boolean-formula> in the <while-phrase> (if present) is
evaluated. If it is FALSE, execution of the <lcop-statement>
concludes.

Step 3: The <{controlled-statement> is executed.

Step U4: The formula in the <by-or-then-phrase> (if present) is
evaluated. The value for the <by-formula> (if present) is
added to the <control-item>. The value of the <then-formula>
(if present) is assigned to the <control-item>. Execution
continues at Step 2.

The <control-item> may be used in <formulas> in the <control-clause> and in
the <{controlled-statement>.

Execution of the <loop-statement> concludes if control is passed to another
statement by means of a GOTO, RETURN, EXIT, STOP, or ABORT statement.

Constraints:

If the <control-item> is a <letter>, it must not be used in the <controlled-
statement)> or <control-clause> in any context in which its value can be altered
(e.g., as an <actual-ocutput-parameter> or as a target in an <assignment-
statement>). If the <control-item> is an <item-name>, assignments to it in the
¢controlled-statement> are not prohibited, but will result in a warning message.

4 <label> in a <controlled-statement> cannot be used as the <statement-name>
in a <goto-statement> or <abort-phrase> that is outside the <controlled-

60

Downloaded from http://www.everyspec.com

MIL-STD-1589C (USaF)
6 July 1984

3tatement> or as an <actual-input-parameter> in a subroutine invocation that is
outside the <controlled-statement>.

The <initial-value>, {by=-formula> and <then-formula> must be equivalent or
implicitly convertible to the type of the <control-item> (see Section 7.0).
Further, the sum of the <by-formula> and the <control-item> wust be equivalent
or implicitly convertible to the type of the <control-item>, The <initial-
value> cannot be of type table.

The <by-formula> (if present) must have type and value such that it may be
legally added to the <control-item> according to the rules of Sections 5.1.1,
5.1.2, and 5.1.3.

If the <control-itemd is a {control-letter>, the <initial-value> wust not be
a <status-constant> that belongs to more than one type (unless the <status-
constant> is disambiguated by an explicit conversion -- see Section 7).

The <control-letter> in a <loop-statementd may not be the same as the
<control-letter> of any enclosing <loop-statement>.

A <bit-formula> cannot be implicitly converted to the <boolean-formula> in a
<{while-clause> or <while-phrase).

Noteas:

There is a danger that a program wmay inadvertently attempt to set the
{control-item> to a value invalid for its type. Here are some examples of such
programw errors:

1. ITEM II S 15;
FOR II: 1 BY 1 WHILE II <= MAXINT(15);

Presumably the intention is to execute the loop MAXINT(15)} times; at the end
of this execution of the loop, II will have the value MAXINT(15). An attempt to
add one to II will then produce an undefined result. The consequences are
implementation-dependent.

2. TYPE LETTERS STATUS 2 (V(A), V(B), V(C), V(D));

FOR I : FIRST (LETTERS) THEN NEXT (I,1)
WHILE I < = LAST (LETTERS);
At the end of the fourth iteration of the loop, I has the value V(D). an

attempt is then made to evaluate the expression NEXT (V(D),1), which is invalid.
The conseguences are implementation-dependent.

61

Downloaded from http://www.everyspec.com

MIL-STD=-1589C {(USAF)
6 July 1984

4.3 IF STATEMENTS

Syntax:
{if-statement> t1= IF <boolean-formula> ; (5.2.2)
{conditional-atatement>
[<else-clause>]
{conditional-statement> 11z <s3tatement> (4.0)

<{else-clause> ELSE <statement> (4.0)

.
'
1}

Semantics:
e il

An {if-statement> provides for conditional execution of a statement
depending on the value of its <boolean=-formula>.

If the value of the <{boolean-formula> is TRUE, the <conditional-statement>
is executed and the <statement> in the ELSE clause (if any) is not executed.

If the value of the <boolean-formula> is FALSE, the <statement> in the
<else-clause> (if present) is executed rather than the {eonditional-statement’>.
In the event of nested <if-statements>, an ELSE associates with the innermost
unmatched IF.

If the <boolean-formula> has a value that is known at compile time,
conditional compilation (see Section 1.3.1} will ocecur.

Constraints:

<Labels> throughout a scope must be unique, even if portions of the text
within the scope are unselected as a result of conditional compilation.

A <bit-formula> cannot be implicitly converted to the <booclean-formula> in
an <if-gstatement>.

Note:

<Labels> in the <conditional-statement> and in the <else-clause> are in the
same scope as the {(if-statement> itself.

j,4 CASE STATEMENTS
Syntax:

CASE
{case~selector-formula’
BEGIN <case-body>
[<label>...] END (4.0)

{case-statement>

.
..
il

62

Downloaded from http://www.everyspec.com

MIL-STD-1589C (USAF)

6 July 1984
{case-gelector-formula> ::= <integer-formula> {(5.1.1)

i <bit-formula> (5.2)

v <character-formula> (5.3)

i <status-formula> (5.4)
<case=-body> 1= <case-alternativel...
<case-alternative)> ii= <case-index-group>

<{statement> (4.0)
{ FALLTHRU]
i <default-option>
{default-option> ::= { DEFAULT)} :
{statement> (4.0)
[FALLTHRY]

{case-index-group> t:t= (<case-index>, ...)

{case-index> t:z <coupile-time-integer-formula> (5.1.1)

| <compile-time-bit-formula> (5.1.2)

1 <compile-time-character- (5.3)

formula>
i <compile-time-status-formula> {5.4)

1 <lower-bound> : (2.1.2.1
{upper-bound> (2.1.2.1)

Semantics:

Whereas an <if-statement> provides for the optional execution of either of
two statements, a <case-statement> provides for a choice of executing one or
more of a number of statements., (The possible choices are representad by the
various <case-alternatives>).

The particular <case-alternative> is selected according to the value of
{case-selector-formula>, Several values of the <case-selector-formula} may
select the same <case-alternative>.

With the exception of the {default-option>, each <case-alternative) is
headed by a <case-index-group> that designates the possible values of the <{case-
selector-formula> that after being implicitly converted (if necessary) to the
type of the <{case-selector-formula>, cause that particular <case-alternative> to
be selected for execution. Bach <case-index> can designate either a single

63

Downloaded from http://www.everyspec.com

MIL-STD-1589C (USAF)
6 July 1984

value or, for integer and status selector types, a c¢losed range of values
bounded by <{lower-bound> and <upper-bound>.

If the value of the <case-selector-formula> does not correspond to a <{case-
index> value, the <{statement> in the <{default-option> is executed.

If FALLTHRU is not present after a selected <statement>, execution of the
<ocase-statement> concludes after that <statement> is executed. If FALLTHRU is
present after the selected <statement>, the <statement> in the textually-
succeeding <case-alternative> is then executed. Control continues to "fall
through" to subsequent <case-alternatives>, until a case-alternative with no
FALLTHRU is executed or until the END of the <{case-statement> has been reached.

If the value of the <case-selector-formula> is known at compile tinme,
conditional compilation (see Section 1.3.1) will ocecur for all unselected
alternatives that cannot be reached via FALLTHRU semantics.

Constraints:

No two {case-alternatives> within the same <case-statement> can be
associated with identical <case-index> values.

If a <default-option> is not present, the value of the <case-selector-
formula> must be represented by a <case-index>.

The types of each formula in a <case-index> must match or be implicitly
convertible to that of the <case-selector-formula> according to the rules given
in Section 7.0.

If the <case-selector-formula> is a <status-foruula>, a <case-index>
specifying lower and upper bounds is legal only if the status-type has the
default representation (see Section 2.1.1.6).

The <upper-bound> in a <case-index> must be greater than or equal to the
<lower-bound>.

Within a <case-statement>, at most one <default-option> may be used as a
{case-alternative>.

Note:

{Labels> in the <default-option> and in the <case-alternatives> are in the
same scope as the <case-statement> itself. Consequently, control can be
transferred into or between case statements.

64

Downloaded from http://www.everyspec.com

MIL-STD=-1589C (USAF)
6 July 1984

4.5 PROCEDURE CALL ST4TEMENTS

Syntax:

<procedure-call-

statepent> {user-defined-procedure-call>

<{machine-specific-~procedure-call>

{user-defined-procedure-
call> {procedure-name> {3.1)
[€actual-parameter-list>]

(<abort-phrase>] ;

..
an
"

([<actual-input-parameter>,...]
[: <actual-output-parapmeter>,... 1)

{actual-parameter-list>

{actual-input-parameter> ::= <formula> {(5.0)
i <statement-name> (4.0)
I <function-name> (3.2)
| <{procedure-name> (3.1)
i <block-reference> {6.1)
<actual-output-
parameter> ::= <variable> (6.1)
i <block-reference’ (6.1)
<{abort-phrase> t:= ABORT <statement-name> {4.0)

<machine-specific-
procedure-call :t= <procedure-naued> (3.1}
[<actual~-parameter-list>] ;

Semantics:

A <procedure-call-statement> causes invocation of a procedure and the
association of formal parameters with actual parameters according to the rules
given in Section 3.3.

A <user-defined-procedure-call> causes invocation of a procedure defined in

a <{procedure-definition>. The <abort-phrase> is for use in connection with
<{abort-statements>. Its semantics are explained in Section 4.10.

65

Downloaded from http://www.everyspec.com

MIL-STL=-1589C (USAF)
6 July 1984

A <machine-specific-procedure-call> causes invocation of a machine-specific
procedure {see Section 3.5).

Constraints:

Actual parameters in the <procedure-call-statement> must match the formal
parameters of the called procedure in number, kind, and parameter list position,
according to the rules given in Section 3.3.

The <statement-name> in an <abort-phrase> or <actual-input-parameter> must
conform to the constraints specified in Section 4.7 for <statement-names> used
in <goto-statements>.

4.6 RETURN STATEMENTS
Syntax:

{return-statement> ::= RETURN ;
Semantics:

The effect of a <return-statement> is to terminate the execution of a
subroutine, set any parameters that have result or value-result semantics, and
return control to the point following the invocation of the subroutine. If the
{return-statement> is in a <function-body>, the current value of the <function-

name> becomes the value of the function call.

If the subroutine containing the <{return-statement> is nested within any
enclosing subroutines, only the innermost subroutine is terminated.

Constraint:

The <return-statement> can appear only within the body of a subroutine.

4,7 GOTO STATEMENTS
Syntax:

{goto~statement> 1tz GOTO <statement-name> ; {(4.0)
Semantics:

A <goto=-statement> causes control to be transferred to the statement named
by the specified <statement-name>.

When the <statement-name> is a formal statement-name parameter, the effect
of a <goto-statement> is equivalent to returning from the current subroutine

66

Downloaded from http://www.everyspec.com

MIL-STD-1589C (USAF)
6 July 1984

invocation without setting result or value-result parameters and then executing
a <goto-statement> at the point of the subroutine’s invocation.
Constraints:

The <statement-name> must be known in the scope in which the <{zoto=-
statement> appears. Further, the <(statement-name> must not be the <label> of a
Statement that is in an enclosing subroutine or in another wmodule. It cannot be
the <label> of a statement in a <controlled-statement> unless the <goto-
statement> is itself within that same <controlled-statement>.

4.8 EXIT STATEMENTS
Syntax:
<exit-statement> ti= EXIT ;

Semantics:

An <exit-statement> causes execution of the immediately enclosing <loop-
statement> to terminate. Its effect is the same as a GOTQ statement that
transfers control out of the <controlled-statement> to the point following the
end of the {loop-statement>.

Constraint:

The <{exit-statement> can appear only in a <controlled-statement>.

4.9 STOP STATEMENTS
Syntax:
<stop-statement> :t= STOP [<integer-formula>] ; (5.1.1)

Semanties:

A <stop-statement> causes execution of the {complete-program> to terminate.
If a {stop-statement> is executed within a <subroutine-body>», the value-result

<actual-output-parameters> of any subroutine whose call is still active will not
be set.

The value of the optional {integer-formula> in a <stop-statement> is made
available to the environment in which the J73 program is executing, where its

Semantics are implementation-dependent. absence of an <integer-foruula> implies
the value is not determined.

Constraint:

The range of legal values of the <integer-formula> is MINSTOP through
MAXSTOP.

67

Downloaded from http://www.everyspec.com

MIL-STD-1589C (USAF)
6 July 1984

4.10 ABORT STATEMENTS
Syntax:

<abort-statement> it= ABORT ;
Semantics:

When an <abort-statement> is executed, control passes tc the statement named
in the <abort-phrase> of the most recently executed, currently active
{procedure-call-statement> that has an <abort-phrase>. All intervening
subroutine invocations are terminated, and value-result parameters of such
subroutines are not aset. If there 1is no currently-active {procedure-call-

statement> that has an <abort-phrase>, the effect of the <abort-statement> is
the same as S5TOP.

68

Downloaded from http://www.everyspec.com

MIL-STD-1589C (USAF)

6 July 1984
5.0 FORMULAS
Syntax:
<formula> ::= <numeric-formula> (5.1)
i <bit-formula> (5.2)
i <character-foruula> (5.3)
| <status-formula) (5.4)
i <pointer-formula> (5.5)
| <table-formula> (5.6}
{compile-time-formula> 1= <compile-time-numeric«formulad {5.1)
| <compile-time-bit-formula> (5.2)

i <compile-time-character-formula’ {5.3)

{compile-time-status-formula> (5.4)

{compile-time-pointer-foruula> (5.5)
Semantics:

<{Formulas> represent values. Each <formulad> has associated with it a type
class and appropriate attributes.

A <compile-time-formula> is a <formula> whose value is computed and used at
compile time.

All compile-time computations are performed using the range and precision
parameters of the target machine.

The followihg constructions yield values at conpile time.

1. Data declared in <constant-item-declarations>, except Ffor constant
items whose type class is pointer.

2. The functions LBOUND, FIRST, and LAST, regardless of their
arguments; the functions UBOUND and HENT, provided their argument
is not a table with * dimensions; the functions NEXT, BIT, BYTE,
SHIFTL, SHIFTR, ABS, and SGN, provided their arguments are known
at compile time; the function NWDSEN, provided its argument does
not contain a reference to a name whose declaration is not
completed prior to the point at which the function appears; the
functions BITSIZE, BYTESIZE, and WORDSIZE, provided (1) their
arguments are type names or have sizes that are known at compile
time, (2) their arguments do not contain references to names whose

69

Downloaded from http://www.everyspec.com

MIL-STD=-1589C (USAF)

6 July 1984

declarations are not completed prior to the points at which the
functions appear, and (3) their arguments are not blocks and are
not tables with * dimensions.

All operator-operand combinations other than dereferencing,
indexing, and assignment, provided the operands have values that
are known at compile time.

All type conversions except REP, provided the value of the
{formula> being converted is known at compile time.

All machine parameters.
All <status-constants>.

All <literals>.

The following values are not known at compile time:

1.
2.
3.
b,

7.
8.

Constant items whose type class 1s pointer.
Constant tables and their components.
All data declared without the word CONSTANT.

The LOC function, regardless of its arkument; the functions UBOQUKD
and NENT, if their argument is a table with * dimensions; the
functions NEXT, BIT, BYTE, SHIFTL, SHIFTR, ABS, and SGN, if they
have one or more arguments whose values are not known at compille
time; the function NWDSEN, if its argument is a name whose
declaration is not completed prior to the point at which the
function appears; the functions BITSIZE, BYTESIZE, and WORDSIZE,
if (1) their arguments are not type names and have sizes that are
not known at compile time, (2) their arguments contain references
to names whose declarations are not completed prior to the points
at which the functions appear, or (3) their arguments are blocks
or tables with * dimensions.

All operator-operand combinations that have one or wore operands
whose values are not known at compile time.

The REP conversicn.
Any value arrived at via a <statement>.

Dereferenced or subscripted values.

Any value known at compile time may also be used as a run-time value.

70

Downloaded from http://www.everyspec.com

MIL-STD-1589C (USAF)

6 July 1984
. 5.1 NUMERIC FORMULAS
Syntax:
<numeric-~formula> 11z linteger-forwulad (5.1.1)
i <floating-formula> (5.1.2)
i <fixed-formula> (5.1.3)

<compile-time-numeric-formula)::= {compile-time-integer-formula> (5.1.1)
1 <compile-time-floating-formula>(5.1.2)

{compile-time-fixed-formula> (5.1.3)

Semantics:
. A <numeric-formula> represents a numeric value.

A <{compile-time-numeric-formula> represents a numeric value that is known at
compile time (see Section 5.0).

5.1.1 INTEGER FORMULAS

. Syntax:
{integer-formula> : [<=ign>] <integer-term> (8.3.1)

{integer-formula>
{plus~or-minus> (8.2.3)
{integer-term>

{integer-factor>

. <integer-term>

{integer-term>
<multiply-divide-or-mod> (8.2.3)
{integer-factor>

{integer-~factor> {integer-primary>

..
s
1}

{integer-factor> #**
<integer-primary>

s
[
{1

{integer-primary> <integer-literal> {8.3.1)

t <integer-machine-
parameter> (1.4)

i <integer-variable>

() 2

Downloaded from http://www.everyspec.com

MIL-STD-1589C (USAF)

6 July 1984
i <named-integer-constant>
! <integer-function-call’
i (<integer-formula>)
i <integer-conversion> (7.0)
{ <formula>) (5.0)
{integer-variable> 11z <variable> (6.1)
<named-integer-constant> :1= <named-constant> (6.2)
{integer-function-call> 1:= <{function-call> {(6.3)

{compile-time-integer-formula> ::= <integer-formula’
Semantics:

An <integer-formula> represents a value whose type class is integer, i.e., S
or U.

The integer operators are +, -, %, /, MOD, and **, which denote addition,
subtraction, multiplication, division, modulus, and exponentiation,
respectively.

The type of a formula composed of an integer operator and two operands is 3
NN-1, where NN is the actual number of bits that would be supplied by the
implementation for a signed integer <{item-declaration> whose size attribute 1is
the larger of the size attributes of the two operands. The type of an <{integer-
formula> consisting of a <sign> and an <{integer-term> is S NN-1, where HN is the
actual number of bits that would be supplied for a signed integer <item-
declaration> whose size attribute is that of the <{integer-teru>.

The quotient of an <integer-term> AA and a non-zero <{integer.factor> BB,
expressed as AA/BB, is defined as follows: Let QABS be the greatest integer not
exceeding the absolute value of the mathematical quotient (A4 divided by BB).
The <integer-term> AA/BB has the value zero if AA equals zero, QABS if AA and BB
have the same sign, and -(QABS) otherwise.

The modulus of two integers, AA MOD BB, is equivalent to AA - (AA/BB)¥3B.

The value produced by integer exponentiation to a positive power is the same
as that produced by repeated multiplication.

The value produced by integer exponentiation to a negative power 1is 1/
(base *% abs (power)) and in most cases is zero.

The value produced by integer exponentiation to the zero power is one,

T2

Downloaded from http://www.everyspec.com

MIL-STD=-1589C (USAF)
6 July 1984
Constraintas;

The value of an <integer-forumula> with size attribute SS nmust lie in the
range MININT(SS} through MAXINT(SS).

An <dinteger-variable>, <named-integer-constant>, or <integer-function-cally
must be an integer (S or U) type.

A <compile-time-integer-formula> must be an <{integer-formula> whose value is
Known at compile-time (see Section 5.0).

The right operand of / and MOD must be non-zero.

Note:

R, T, and Z used in an explicit conversion (see Section 7.0) do not affect
the value of integer division.
5.1.2 FLOATING FORMULAS
Syntax;

{floating-formula> ‘[<sign>] <floating-term> (8.3.1)

.
ae
1]

<floating-formula>
<{plus-or-minus> {8.2.3)
{floating-term>

<fleoating-factor>

{floating-term>

{floating-term’
<multiply-or-divide> {8.2.3)
(floating=-factor>

{floating-primary>

e
e
I}

{floating-factor>

+ <floating-factor>
*% <floating-primary>
i <floating-factor>
¥ dinteger-primary> {3.1.1)
{floating-primary> 1:z= <floating-literal> (8.3.1)

<floating-machine-parameter>{1.4)

i <floating-variable>
i <named-floating-constant>
| <floating-function-call>

73

Downloaded from http://www.everyspec.com

MIL-STD-1589C (USAF)

6 July 1984
i (<floating-formula> }
! <floating-conversion> (7.0)
(<formula>)} (5.0}
{floating-variable> ::= <variable> (6.1)
<{named-floating-constant> ::= <named-constant> (6.2)
{floating-function-call> ::= <function-call> (6.3)

<compile-time-floating=-formula>::= <floating-foruul«>
Semantics:
A <floating-formula> represents a value whose type class 1is float.

The floating operators are +, -, %, /, and #% which denote addition,
subtraction, multiplication, division, and exponentiation respectively. In
exponentiation with a <floating-factor>, a floating value is produced in all
2as3ed.

The precision attribute of a <floating-formula> is that of the forwmula's
most precise floating operand. The operand of a {floating-conversion> is first
computed according to the default rules, and then converted to the specified
floating type (see Section T7.0).

For floating exponentiations whose right operand is an {integer-primary>,
the result is -(ABS (left operand) ** right operand) if left operand 1is
negative and right operand is odd; (ABS (left operand) ** right operand) in
all cther cases.

Conatraints:

The wvalue of a <floating-formula)> with precision PP must lie in the range
FLOATUNDERFLOW (II) through MAXFLOAT (II) or the range MINFLOAT (II) through
-FLOATUNDERFLOW (II) or be zero, where II = IMPLFLOATPRECISION(FP).

A <floating-variable>, <named-floating-constant>, or <floating-function-
call> must be a floating type.

A <compile-time-floating-formula> must be a <floating=-formula> whose value
is known at compile time (see Section 5.0).

For exponentiations where the right operand is a {floating-primary>, the
left operand must not be negative.

EZxponentiation of an integer base to a floating power cannot be performed.

Either the base must be converted to floating or the power must be econverted to
integer.

74

R R R RS

Downloaded from http://www.everyspec.com

MIL~-STD-1589C (USAF)
6 July 1984

The divisor must be non-zero.

Note:

The round or truncate attribute associated with variables or constant names
does not affect the computation of floating formula results. Floating formulas
are evaluated in an implementation-dependent manner with respect to how exact
results are approximated to the implemented precision.

5.1.3 FIXED FORMULAS

Syntax:
{fixed-formula> ti= [<sign>] <fixed-~term> {8.3.1)
| <fixed-formula>
{plus-or-minus> (8.2.3)
{fixed-term>
{fixed~-term> 1:= {fixed-factor>
i <fixed-term) ¥
<fixed-factor>
i <integer-term> * (5.1.1)
{fixed-factor>
i <fixed-term)
<uultiply-or-divide> (8.2.3)
{integer-factor> (5.1.1)
{fixed=-factor) t:z <fixed-literal {(8.3.1)

i <fixed-machine-parameter> (1.4)
i <fixed-variable>

1 <named-fixed-constant>

i <fixed-function-call>

i (<fixed-formula>)

i <fixed-conversion> (7.0}

{ <fixed-term> /
{fixed-factor>)

<fixed-conversion)» {7.0)
(<integer-term> /
{fixed-factor>)

75

Downloaded from http://www.everyspec.com

MIL-STD-1589C (USAF)

6 July 1984
i <fixed-conversion> (7.0)
{ <formula>) (5.0}
{fixed-variable> ::= <variable> {6.1)
{named-fixed-constant> t:= <named-constant> {6.2)
{fixed-function-call> ;1= <function-call> (6.3)

{compile-time-fixed-formula> 1z <{fixed-formula’
Semantics:
A <(fixed-formula> represents a fixed point value.

The fixed point operators are +, -, %, and /, which denote addition,
subtraction, multiplication, and division, respectively. The rules specifying
the result type of these operators guarantee that, in general, exact results are
produced. The specific rules are given below for each operator. In these
rules, Sn, Fn, and Pn refer to the scale, fraction part, and precision of an
operand or result and n is 1, 2, or R to indicate the first operand, second
operand, or result, respectively.

For addition and subtraction, the default type of the result is:

SR = 381 = 82
FR = Max (F1,F2)
PR = Max (P1,P2)

For multiplication, there are two cases:

1. When one operand is an integer, the result scale and
precision are those produced by successive addition, i.e.,

SR = Sa
FR = Fa
PR = Pa

where 3Sa, Fa, and Pa represent the scale, fraction, and
precision values of the fixed point operand.

24 When both operands are fixed point types, the type of the result

is:
SR = 51 + 32
FR = F1 + F2
PR =z P1 + P2

76

Downloaded from http://www.everyspec.com

MIL-STD~1589C (USAF)
6 July 1984

If PR is larger than MAXFIXEDPRECISION or if SR does not 1ie in the range - 127
through + 127, then the product must be explieitly converted to a valid fixed
point scale and precision (see Section 7.0).

For division, there are also two cases:

1. When dividing a fixed point value by an integer, the scale and
precision of the result are the scale and precision of the
Numerator. Truncation will be toward zero.

2e When both operands are fixed point values or when an integer is
divided by a fixed point value, the result is exact and nust be
explicitly converted to a programmer specified scale and precision
(see Section 7.0).

The default result type of a <fixed-formula> containing a <{sign> as a prefix
operator is the type of the operand.

The result type of a <fixed-factor> that is a {fixed-variable>, <naned-
fixed-constant>, or <fixed-function-call> is the type aspecified in their
respective variable, constant, or function declarations.

The type of a <fixed-literal> is contextually determined (see Sec€ion
8-3-1).

The result type of a <fixed-foruula> enclosed in parentheses is the type of
the enclosed <{fixed-formula>.

The result type of a <fixed-factor) containing a <{fixed-conversion> is the
type apecified by the <fixed-conversion>, If the operand of the <fixed-
conversion> is a <{fixed-term> or {fixed-foruula>, the infix or unary operator is
evaluated exactly, and the mathematically-defined result is converted to the
Specified fixed type.

Constraints;

Except for the operand of a {fixed-conversion>, the value of a <{fixed-
formula> whose scale is SS and whose fraction attribute is FF must lie in the
range MINFIXED(SS,PP=S3) through MAXFIXED(SS,PP-SS), where PP =
IMPLFIXEDPRECISION (38,FF).

A <(fixed-variable>, {named-fixed-constant>, and <fixed-function-call> must
have been declared as fixed types.

Operands of fixed point addition or subtraction must have identical scales.

A <compile-time-fixed-formula> must be a <fixed-formula®> whose value is
known at compile time (see Section 5.0).

The divisor must be non-zero.

77

Downloaded from http://www.everyspec.com

MIL-STD-1589C (USAF)
6 July 1984

Note:

MOD and ** are not defined for fixed point operands.

5.2 BIT FORMULAS

Syntax:
<pit-~formula> ::= <logical-operand>
[<logical-continuation>]
! WNOT <logical-operand>
<logical-operand> ii= <bit-primary>
| <relational-expression> (5.2.1)
<bit-primary> ::= <bit-literal> (8.3.2)
| <boolean-literal> (8.3.3)
i <bit-variable>

i <named-bit-constant>
1 <bit-function-call’>
i (<bit-formula>)

<bit-conversion> {7.0)
{ <foruula>) (5.0)

{logical-continuation> <and-continuation>...

Lor=continuation>...
! <xor-continuation>...

| <eqv-continuation>...

{and-continuation> t:= AND <logical-operand>
<or-continuation> 1tz OR <logical operand>
{xor-continuation> 3= XOR <logical-operand>
{eqv-continuation> t:1= EQV <logical-operand>
<bit-variable> t:= <variable> (6.1)
<{named-bit-constant> t1= <pamed-constant> {6.2)

78

Downloaded from http://www.everyspec.com
MIL-STD=-1589C (USAF)
6 July 1984

{bit-function-call> :11= <function-call> {6.3)

{compile-time~bit-formula> t:= <bit-formula>

Semantics;

A <{bit-formula> represents a value whose type class is bit. 1Its size is the
number of bits comprising its value.

Iif the <bit-formula> is composed of <logical-gperands> and one or more of
the logical operators AND, OR, XOR, and EQV, the size of the result is the size
of the longest operand. Shorter operands are padded on the left with zeros as
necessary. Note that the syntax requires explicit parentheses for all <bit-
formulas> containing two or wmore of these operators, unless the operators are
identical.

NOT produces a value that is the logical complement of its operand. AND, OR
(inclusive or), XOR (exclusive or), and EQV (equivalence) perform their usual
logical function on their two operands on a bit-by-bit basis. If both operands
have a aize of one bit and the value of the left operand is such that the result
of the operator can be determined, evaluation is "short-circuited", i.e., the
right operand will not be evaluated and need only satisfy semantic constraints
that can always, even in the most general case, be verified without evaluating
the operand (e.g., the operand need not satisfy the division by zero constraint
if it is not evaluated).

Constraints:

A <bit-variable> must be a <variable> whose type class is bit.
A <named-bit-constant> must be a <named-constant> whose type class is bit.
A <bit-~function-call> must be a <function-call> whose result value is bit.

A <compile-time-bit-formula> must be a <bit-formula> whose value is known at
compile time {see Section 5.0).

5.2.1 RELATIONAL EXPRESSIONS

Syntax:

{relational-expression> iz <dinteger-formula? {(5.1.1)
<{relational-operator> (8.2.3)

{integer-formula> (5.1
i <floating-formula> (5.1.2)
{relational-operator> {8.2.3)
{floating-formula> {5.1.2)

79

Downloaded from http://www.everyspec.com

MIL-STD-1589C (USAF)

6 July 1984
| <{fixed-formula> (5.1.3)
<{relational-operator> (8.2.3)
{fixed-formula> (5.1.3)
i <character-{ormula> (5.3)
{relational-operator> (8.2.3)
<{character-formula> (5.3)
! <status-formula> (5.4)
<{relational-operator> (8.2.3)
<status-formula> (5.4)
i <bit-primary> (5.2)
<equal-or-not-equal-operator> (8.2.3)
<bit-primary> (5.2}
| <pointer-formala> (5.5)
<relational-operator> (8.2.3)
{pointer-formula> (5.5)
Semanties:

4 <relational-expression? represents a value obtained by comparing two
formulas using a <relational-operator>. Its type class is B and its size 1s one
bit.

The relational operators, = f{equal), <> (not equal), < (less than), >
(greater than), <= (less than or equal), and >z (greater than or equal}, carry
their usual meanings.

Character comparisons will be made on the basis of the collating sequence of
the character set used in a given implementation.

Status comparisons will be made on the basis of the representation of the
status values.

Pointer comparisons will be made on a target-machine-dependent basis.

For bit and character operands, the shorter will be implicitly converted to
the type of the longer as described in Section 7.0.

Constraints:

When both operands are <{status-constants>, at least one ust be
unambiguously associated with a single status type.

When the two operands are <status-formulas>, their types must be identical.

When the two operands are <pointer-formulas>, their types must be identical
or one must be an untyped pointer.

80

Downloaded from http://www.everyspec.com

MIL-STD-1589C (USAF)

6 July 1984
When both operands are <fixed-formulas>, there must exist a type to which
both operands are implicitly convertible.
5.2.2 BOOLEAN FORMULAS
Syntax:
<{boclean-formula> tiz <bit~-formula> {5.2)

Semantics:

A <booclean-foruula> is a <bit-formula> whose size is one bit. It has the
value TRUE if the value of the bit is one and FALSE otherwise.

Constraints:
In contexts syntactically requiring a <boolean~formula> (<{if-statements>,
. <{while=-clauses>, <while-phrases>, and <{trace-controls>), a <bit-formula> cannot
be implicitly converted to a <boclean-formula>.

5.3 CHARACTER FORMULAS

Syntax:

. {character-formula> :

{character-literal> (8.3.4)

<character-variable>

i <named-character-constant>
i <character-function-calld

i { <character-formula>)

i <character-conversion> (7.0)

(<formula>) (5.0)

{character-variable> ::= <variable> (6.1)

{named-character-constant> :i= <Knamed-constant> (6.2)

<{character-function-call> ::= <function-call> (6.3)
<{compile-time-character-formula> ::= <character-formula>

Semantics:

A <{character-formula> represents a value whose type class is character. Its
size is the number of bytes comprising its value.

@ .

Downloaded from http://www.everyspec.com

MIL-STD-1589C (USAF)
6 July 1984

Constraints: .

A <character-variable> must be a <variable> whose type class is character.

A <named-character-constant) must be a <named-constant> whose type class is
character.

A <character-function-call> must be a <function-call> whose result value is
character.

A <compile-time-character-formula> must be a {character-formula> whose value
is known at compile time (see Section 5.0).
5.4 STATUS FORMULAS
Syntax:

{status-formula>

<status-constant> (2.1.1.6) .

{status-variable>
i <named-status-constant>

| (status=-function=-call>

{ <status-formula>) .
(7.0)

{ <status-converslon>
(<formula>) (5.0)
{status-variable> ::= <variable> (6.1)
{named-status-constant> t:= <named-constant> (6.2)
<{status-function-call> ;1= <function=-call> (6.3) .

<compile=-time-status-formula> ::= <status-formula>

Semantics:

A <status-formula> represents a value whose type class is status.
Constraints:
4 <status-variable> must be a <variable> whose type class is status.

A <named-status-constant> must be a <named-constant> whose type class is
status. .

4 <status-function-call> must be a <function-call> whose result value is

status.

Downloaded from http://www.everyspec.com

MIL-STD~1589C (USAF)
6 July 1984

A <compile-time-status-formula> must be a <status-formula> whose value is
kKnown at compile time {see Section 5.0).

5.5 POINTER FORMULAS

Syntax:
<pointer-formula> ::= <pointer-literal> {8.3.9)
i <pointer-variable>
i <named-pointer-constant>
i <pointer-function-call>
i (<pointer-formula>)
i <{pointer-conversion> (7.0)
(<formula>) (5.0)
<{pointer-variable> 13z {variable> (6.1)
{named-pointer-constant> ti= <pamed-constant> (6.2)
{pointer-function-call> ti= <function-call> (6.3)

{compile-time-pointer-formulal ::= <pointer-formula>

Semantics:

A <pointer-formula> represents a value whose type class is pointer.
Constraints:
A <pointer-variable> must be a <variable> whose type class is pointer.

A <named-pointer-constant> must be a {named-constant> whose type class is
pointer.

A <pointer-function-call> must be a {function-¢all> whose result value is
pointer.

A <compile-time-pointer-formula®> must be a <{pointer-formula> whose value is
known at compile time (see Section 5.0).

5.6 TABLE FORMHULAS
Syntax:
{table-formula> i:= <table-variable>

83

MIL-STD-1589C (USAF)

6 July 1984
{ <named-table-constant>
! (<table-formula>)
i <table-conversion>
(<formula>)
{table=-variable> ::= <variable>
{named-table-constant> ::= <named-constant>

Semantiecs:

A <table-formula> represents a value whose type class is table.

Constraints:

L
Downloaded from http://www.everyspec.com

(7.0)
(5.0)

(6.1)
(6.2)

A <table-variable) must be a <variable)> whose type class is table.

A <named-table-constant> must be a <named-constant> whose type class is

table.

L]

Downloaded from http://www.everyspec.com

MIL-STD-1589C (USAF)
6 July 1984

. 6.0 DATA REFERENCES

6.1 VARIABLE AND BLOCK REFERENCES
Syntax:

<variable>

.
]

<named-variable>

{bit-function-variable>

i <byte-function-variable>

<rep-function-variable>

{function-name> {3.2)

{named-variable> <item>

<table>

! <table-item>
i <table-entry>
i <block-item>
. | <block-table>
i <block-table-item>
i <block-table-entry>

{item> = <item-name> {2.1.1)

e
.-
1

. i <item-dereference>
{table> ::= <table-name> (2.1.2)
i <table-dereference>
<{table-itemd> ::1= <table-item-name> (2.1.2.3)
[<subseript>]

[(<table-dereference>]

<{table-entry> ::= <table-name> (2.1.2)
<{subscript’>

| <table-dereference>
<subscript>

<{block=-item> : {item-name> (2.1.1)
[<block-dereference’]

@ .

.
n

Downloaded from http://www.everyspec.com

MIL-STD-1589C (USAF)

6 July 1984

<{block-table> i1z <table-name> (2,1.2)} .
[<block-dereference>]

<block-table-item> 11z <table-item-name> (2.1.2.3)
[<{subscript>]
(<block-dereference>]

{block-table-entry> t1= <table-name> (2.1.2)
<{subscript>

[<{block-dereference>]

<{block-dereference> s:= <dereference>
{iten-dereference> :1¢= <dereference’>
{table-dereference> ::= <dereference’
<{dereference> 11z & <pointer-item-name> .

@ (<pointer-formula>) {5.5)

{pointer-item-name> 11z <{itenm-name> (2.1.1)
i <table-item-name> {(2.1.2.3)
i <constant-item-name> {2.1.3) .
{subscript> s:z { <index>,...) {(5.1.1)
{index> ::= <integer-formulad (5.1.1)
| <status-formula> (5.4)
<bit-function-variable> i:= BIT (<bit-variable> , (5.2)
<fbit> , <nbit>) (6.3.3) .
{byte-function-variable> ::= BYTE (
{¢character-variable> , {5.3)
<fbyte> , <nbyte>) (6.3.4)
{rep-function-variable> t:z= <Lrep=-conversion> (7.0)

(<named-variable>)}

<{block-reference> ::= <block-name> (2.1.4)
i <block~dereference>

! <block-name? (2.1.4)
{block-dereference>

86 .

Downloaded from http://www.everyspec.com

MIL-3TD-1589C (USAF)
b July 1984

Semantics:

A <variable> designates a data object whose value can be changed by
assignment. A <{named-variable> designates a data object whose value can be used
in a formula and changed by assignment. A <dereference) designates the data
object whose address is contained in the <pointer-item-name> or {pointer-
formula> of the <{dereference>.

An <ditem> variable designates either an object declared in an <itenm-
declaration> or an object pointed to by a typed pointer whose <type-name>
attribute 1is an item type. In the latter case the item is referenced with an
{item-dereference> (i.e., the pointer is dereferenced to obtain the item).

A <table> variable designates either an object declared in a <table-
declaration> or an object pointed to by a typed pointer whose <type-name>
attribute is a table type. In the latter case the table is referenced with a
(table-dereference> (i.e., the pointer is dereferenced to obtain the table).
The type class of a <table> is table.

A <table-item> variable designates an item component of a table. If the
table is dimensioned, the subscript indicates from which entry the item is to be
obtained. If <table-item~name> was declared in a {table-type~declaration>
(rather than a <{table-item-declaration>) the <table-dereference> references the
particular table from which the item is to be obtained.

A <table-entry> variable designates an entry in a dimensioned table. The
table is referenced either with a <table-name> or with a {table-dereference>.

The type class of a <table-entry> is table for entries declared with an
<ordinary-table-body>, {specified-table-body>, or <table-type-name>, and
otherwise 1is the type specified by the underlying <item-type-description>.
(Note that {table-entry> is syntactically a subscripted <table-name> or <table-
dereference>.)

If the type class of a particular {table-entry> is not table, any operation
or intrinsic function except LOC, NWDSEN, and REP applied to that entry is
interpreted as applying to the item whose type class and attributes are given by
the underlying <item-type-description>. LOC, NWDSEN, and REP are interpreted as
applying to the entire physical space occupied by the object, including filler
bits preceding or following the item.

A <block-item> variable designates an item component of a block. If the
{item-name> was declared in a {block-type~declaration>», the <block-dereference>
references the particular block from which the item is to be obtained.

A <block-table> variable designates a table component of a block. If the
{table-name> was declared in a <block~type-declaration>, the <block-dereference>
references the particular block from which the table is to be obtained.

A <block-table-item> variable designates an item component of a table which
is itself a component of a block. If the table is dimensioned, the subscript
indicates from which entry the item is to be obtained. If the <{table-item-name>

87

Downloaded from http://www.everyspec.com

MIL~-STD-1589C (USAF)
6 July 1984

was declared in a <block-type-declaration>, the <block-dereference> references
the particular block from which the item is to be obtained. (Hote that if the
<table-item-name> was declared in a <table-type-declaration>, it cannot be
obtained as a <block-table-item> variable but must be obtained as a <table-item>
variable with a <table-dereference>.)

A <block-table-entry> variable designates an entry in a dimensioned table
which is contained in a block. If the <table-name> was declared in a {block-
type-declaration>, the <block-dereference> references the particular block from
which the table entry is to be cbtained.

A <bit-function-variable> is the use of the BIT functien in an assignment
context (i.e., the target of an <assignment-statement> or an {actual-cutput-
parameter>) to designate that a specified substring of the <(bit-variable> i3 to
be used as a variable. <Fbit> indicates the starting bit and <nbit> indicates
the size of the substring. Bits are numbered from the left beginning with zero.

A <byte-function-variable> is the use of the BYTE function in an assignment
context (i.e., a target of an <assignment-statement> or an <actual-output-
parameter>)} to designate that a specified substring of the <{character-variable>
is to be used as a variable. {Fbyte> indicates the starting character and
<{nbyte> indicates the size of the substring. Characters are numbered from the
left beginning with zero.

A <{rep-function-variable> is the use of the <rep-conversion> in an
assignment context (i.e., the target of an <assignment-statement> or an <actual-
output-parameter>) to designate that the <named-variable> is to be treated as a
bit string variable whose size 1is the number of bits of storage actually
cccupled by the <named-variable>.

A <block-reference> designates either an object declared in a <block-
declaration> or an object whose attributes are specified in a <block-type-
declaration> and whose location is specified via a <block-dereference>. The
<{block-reference?> is specified by any of the following:

o <{Block-dereference> - Lo access a block by specifying its
<{type-name> and location (<{type-name> is implied by the
dereference).

o <{Block-name> <block-dereference> - to access a block declared
in the body of a <block-type-declaration>.

o] <{Block-name> - to access any other block.
Constraints:

A <subscript> must be present in a <table-item> or <block-table-item> if the
type of the table is dimensioned.

A <subscript> in a <table-item>, <table-entry>, <block-table-item>, or
<block-table-entry> must econtain the same number of <indices> as there are
{dimensions}> in the <dimension-list> of the declaration of the table's type.

88

R R R RS

Downloaded from http://www.everyspec.com

MIL-3STD-1589C (USAF)
6 July 1984

. Furthermore, the type of each <index> must be equivalent to, or be implicitlyy:

convertible to, the type of the corresponding <{dimension> and the value of each
index must be within the bounds specified for that dimension. If the designated
table is a formal parameter and the <dimensions> were specified as #*, the
indices must be <integer-formulas> {even if bounds of an actual parameter on a
particular invocation are of status type), and the value of each index must be
in the range 0 through N#-1, where NN is the number of elements in that
dimension of the actual parameter.

If the <table-item-name> in a <table-item> was declared in a <{table-type-
declaration>, the <{table-item> must contain a <table-dereference> whose pointer
is of the appropriate type.

If the <item-name> in a <block-item> was declared in a <block-type-
declaration>, the <block-item> must contain a <block-dereference> whose pointer
is of the appropriate type.

A reference to a <table-item> or {table-entry> must not access storage
. outside the bounds of the table containing that <{table-item) or {table-entry>.

If the <table-name> in a <block-table> or {block-table-entry> was declared
in a <block-type-declaration», the <block-table> or <block-table-entry> must
contain a <block-dereference> whose pointer is of the appropriate type.

If the <table-item-name> in a <block-table-item> was declared in a <block-
type-declaration>, the <block-table-item> must contain a <block-dereference>
. whose pointer is of the appropriate type.

<Fbit> and <nbit> must not designate a substring beyond the bounds of the
{bit-variable>. <Nbit> must be greater than zero.

<Fbyte> and <nbyte> must not designate a substring beyond the bounds of the
{character-variable>. <Nbyte> must be greater than zero.

A <function-name> c¢an be used as a <variable> only within the body of a

. function having that <function-name>, and then only as the left-hand side of an

assignment statement. The other valid uses of <{function-name> are described in
Section 3.2.

A pointer to an undimensioned parallel or tight table type cannot be used in
a <dereference>.

The value of a pointer used in a <dereference> must be in the

implementation-defined set of valid values for pointers of its type. A pointer
whose value is NULL cannot be dereferenced.

6.2 HNAMED CONSTANTS
Syntax:

<{named-constant> 1z <constant-item-name> {(2.1.3)
“II' 89

Downloaded from http://www.everyspec.com

MIL-3TD-1589C (USAF)

6 July 1984
i <constant-table-name> (2.1.3)
| <constant-table-item-name>
[<subscript>] (6.1)
i <constant-table-name> (2.1.3)
<{subseript> (6.1)
| <control-letter> (4.2)
<constant-table-item-name> i1:= <table-item-naue> (2.1.2.3)
Semantics:

A <named-constant> designates a constant data object whose value can be used
in a formula but cannot be changed.

4 <constant-item-name> designates an object declared in a constant item
declaration.

A <constant-table-name> designates an object declared in a constant table
declaration.

A <constant-table-item-name> designates an item component of a constant
table. If the table is dimensioned, the <subscript> indicates from which entry
the item is to be obtained.

4 <constant-table-name> followed by a <subseript> designates an entry in a
dimensioned constant table.

A <control-letter> designates an object created in a <for-clause> whose
{control-item> is a single letter.

Constraints:

A <subscript> must follow a <constant-table-item-name> 1if the table is
dimensioned.

4 <subscript> following a <constant-table-item-name> or {constant-table-
name> must contain the same number of <indices> as there are <dimensions> in the
¢dimension-1ist> in the declaration of the table. Furthermore, the type of each
<index> must be the same as the type of the corresponding <dimension> and the
value of each <index> must be within the bounds specified for that <dimension>.

Constant tables and items selected from constant tables via subscripts
cannot be used as compile-time values.

4 <control-letter> may be referenced only within the <loop-statement> whose
{forw-clause> created that <{control-letter>,

90

Downloaded from http://www.everyspec.com

MIL-STD-1589C (USAF)
6 July 1984

. 6.3 FUNCTION CALLS

Syntax:

{function-call> = <user-defined-function-call>

i <intrinsice-function-call>

i1 <machine-specific-function-call>

{user-defined-function-call>::=z <function-name> (3.2}
[<actual-parameter-list>] (4.9)
<{intrinsic-function-call> t1= <loc-function> (6.3.1)
v <next-function> (6.3.2)
| <bit-function> {(6.3.3)
i <byte-=function> (6.3.4)
i <shift-function> (6.3.5)
i <abs-function> (6.3.6)
{ <sign-function> (6.3.7)
i <size-function> (6.3.8)
i <bounds-function> (6.3.9)
i <nwdsen-function> (6.3.10)
i <status<inverse-function> (6.3.11)
i+ <nent-function> {6.3.12)

<machine-specific-function-
call> t:= <function-name>
[<actual-parameter-1list>]

—~—
£

.
o no
(R

Semantics:

Execution of a <function-call> causes invocation of a function. Any actual
parameters are bound to the corresponding formal parameters as described in
Section 3.3.

A <user-defined-function-call> causes invocation of a function defined in a
{function-definition>. The type of the value returned by the function is the
type specified by the {item-type-deseription> in the <function-heading> of the
<function-definition>.

91

Downloaded from http://www.everyspec.com

MIL-STD-1589C (USAF)

6 July 1984
An {intrinsic-function-call> causes invocation of a language-defined .
function. A description of the language-defined functions is contained in the

following sections. The type of the value returned by each function is
described in the corresponding section.

A <machine-specific-function-call> causes invocation of a machine-specific
function {see Section 3.5).

Constraints:
Actual parameters in the <function-call> must match the formal parameters of

the called function in number, type, and parameter list position according to
the rules given in Section 3.3.

6.3.1 LOC FUNCTION

Syntax: I

<{loc-function> 11z LOC (<loc-argument>)
{lo¢-argument> 11z <named-variable> (6.1)
| <statement-name> (4.0)
i\ <procedure-name> (3.1) .
i <function-name> (3.2)
i <block-reference’> {6.1)

Semantics: .

The LOC function can be applied to the <loc-argument> to obtain the machine
address of the word in which the <{loc-argument> is stored. The type of the
value returned by the LOC function for each <{loc-argument> listed below is a
typed pointer (e.g., type P TT if the <{type-name> involved is TT):

o} An <item> or <table-item> whose declared description
is <{type-name>.

o] A <{table> whose declaration includes <{type-name> but
excludes both <dimension-list> and <entry-specifiler>.

o] A <{table-entry> of a data table or table type whose
declaration includes <dimension-list> followed by
{type-name> but excludes {entry-specifier>.

2 |

o A <{dereference>.

Downloaded from http://www.everyspec.com

MIL-STD=-1589C (USaF)
6 July 1984

Otherwise, the type of the value returned by the LOC function is P (i.e., an
untyped pointer).

If the <loc-argument> is a {statement-name>, <procedure-name>, or <function-
name> the <loc-function> yields an untyped pointer whose value 1is the machine
address used to access the designated statement or subroutine.

Constraints:

The LOC of a subroutine whose name appears in an {inline-declaration>, or of
a <statement-name> whose definition appears in such a subroutine, is
implementation-defined.

Note:

The LOC function cannot be applied to an intrinsic funetion.

6.3.2 NEXT FUNCTION

Syntax:
<next-function> ti= NEXT
{next-argument> ,
<inecrement-amount>)
<{next-arxument> 1= <pointer-formula> (5.5)
| <{status-formula> (5.4)
{inerement-amount> 1:= <integer-formula> (5.1.1)

Semantics:

If the <next-argument> is a <pointer-formula>, the value returned by the
NEXT function is the arithmetic sum of the representation of the <pointer-
formula> plus the <increment-amount> * LOCSINWORD (i.e., the {pointer-formula>
is treated as an integer). The type of the value returned is a pointer of the
same type as the <next-argument>.

ifr the <next-argument> 1is a <status-formula> and the value of the
<{increment-amount> is N, the value returned by the NEXT function is the Nth
successor (or predecessor if W is negative) of the value of the <status-formula)
in this <status-list>. The type of the value is the same as the type of the
<{next-arguuent>.

93

Downloaded from http://www.everyspec.com

MIL-STD-1589C (USAF)
6 July 1984

Constraints:
The <next-argument> cannot be a <status-constant> that belongs to more than

one status %ype (unless explicitly disambiguated with a {status-conversion>),
nor can it be the <{pointer-literal> NULL.

The type of the <status-formula> must be a status type with a default
representation.

When the <next-argument> is a <status-formula>, the <increment-amount> nust
not cause the NEXT function to return a value out of range of the type of the
<next-argument>.

The value of the <{pointer-formula> and the value of the pointer result must
be in the implementation-defined set of valid values for pointers of its type.

Note:

The value of the <increment-amount> may be negative.
Note that, assuming table tt is neither tight nor non-parallel

HEXT (LOC(tt(nn)), NWDSEN(tt)) = LOC{tt(nn+1))

6.3.3 BIT FUNCTION

Syntax:
<bit=-function> i:z BIT { <bit-formula> , (5.2)
{fbit> , <nbit>)
<fhit> ::= <intexer-formula> (5.1.1)
<{nbit> ::= <integer-formula> (5.1.1)

Semanties:

The BIT function selects a designated substring from the <bit-formula>.
<Fbit> indicates the starting bit and <nbit> indicates the size of the
substring. . Bits are numbered from the left beginning with zero. The type of
the value returned is a bit string of the same size as the <bit-formula’. The
designated substring is right Jjustified in the result and padded on the left
with zero bits as necessary to fill the size.

Constraintsa:

<Fbit> and <nbit> wmust not designate a substring beyond the bounds of the
<{bit-formula>. <Nbit> must be greater than zero.

94

Downloaded from http://www.everyspec.com

MIL-STD-1589C (USAF)
6 July 1984

6.3.4 BYTE FUNCTION
Syntax:

<{byte-function> BYTE (<character-formula> |, {(5.3)

{fbyte> , <nbyte>)

{fbyte> t:= <integer-formula> (5.1.1)
<{nbyte> t:= <integer-formula> {(5.1.1)
Semantics;

The BYTE function selects a designated substring from the <character-
formula>. <Fbyte> indicates the starting character and <{nbyte> indicates the
size of the substring. Characters are numbered from the left beginning with
zerc. The type of the value returned is a character string of the same size as
the <character-formulay. The designated substring is left justified in the
result, and padded on the right with blanks as necessary to fill the size.

Constraints:

<Fbyte> and <nbyte> must not designate a substring beyond the bounds of the
{character-formula> . <Nbyte> must be greater than zero.

6.3.5 SHIFT FUNCTIONS

Syntax:
<shift-functiony tt= <shiftadirection>
(<bit-formula> ,
{shift-count>) (5.2)
<shift-direction> $3= SHIFTL
i SHIFTR
{shift-count> i:= <integer-formula) {5.1.1)

Semantics:

The SHIFTL function perforus a logical left shift of the <bit-formulad by
the number of positions indicated by <shift-count>. The SHIFTR function
performs a logical right shift of the <bit-formula> by the number of positions
indicated by <shift-count>. 1In both cases, vacated bits are filled with zeros
and bits shifted out are lost. If the <shift-count> is greater than or equal to
the size of the <(bit-formula>, the result is a bit string with all zero bits.
The type of the value returned by a <shift-function> is the same as the type of
the <bit-formula>.

95

s L e

Downloaded from http://www.everyspec.com

MIL-STD-1589C {USAF)
6 July 1984

Constraints: .

The value of <shift-count? must be non-negative and less than or equal to
MAXBITS.
6.3.6 4BS FUNCTION
Syntax:
<{abs-function> ::= ABS (<numeric-formula>)} (5.1)
Semantics:
The ABS function produces a value that is the absolute value of the

<numeric-formula>. The result is equivalent to - <numeric-formula> if <numeric-
fornula> is negative and equivalent to + <{numeric«formula> otherwise.

6.3.7 SIGN FUNCTION

Syntax:
<sign-function> :t= SGN (<numeric-formula>)} (5.1)
Semantica:
The SGN function returns a value according to the following rules: .
Numeric Formula Value

>0 +1
=0 0
<0 -1

The type of the value is S 1. .

6.3.8 SIZE FUHNCTIONS
Syntax:

<size-function> :

{size-type>
(<size-argument>)

<size-type> BITSIZE

T
..
1]

BYTESIZE

\ WORDSIZE

: |

Downloaded from http://www.everyspec.com

MIL-STD-1589C (USAF}

6 July 1984
{size-argument> tiz <formula> (5.0)
i <block-name> (2.1.4)
i <type-name> (2.1.1.7)

Semantics:

The BITSIZE, BYTESIZE and WORDSIZE functions return the logical size of the
{size-argument> in bits, bytes, and words respectively. The type of the value
returned is S MAXINTSIZE. The logical BITSIZE of each data type in the language
will be described below. The logical BYTESIZE is equal to BITSIZE/BITSINBYTE if
BITSIZE 40D BITSINBYTE = 0 and BITSIZE/BITSINBYTE+1 otherwise. Similarly, the
logical WORDSIZE is equal to BITSIZE/BITSINWORD if BITSIZE MOD BITSINWORD = O
and BITSIZE/BITSINWORD+1 otherwise.

bit: The BITSIZE of an object of type B NW is NN

Integer: The BITSIZE of an object of type U NN is NN and
S NN is NN+1

Fixed: The BITSIZE of an object of type A MM, NN

——

is MM+NN+1

Float: The BITSIZE of a float object is the number of
bits of storage the object actually occupies.

Character:The BITSIZE of an object of type C NN is NN*BITSINBYTE.
Pointer: The BITSIZE of a pointer object is BITSINPOINTER.

Status: The BITSIZE of a status object is the minimum number of bits
to be allocated, as defined in Section 2.1.1.6, for <status-formulas>
using unsigned integer representation, that minimum plus one when
signed integer representation is required.

Table: The BITSIZE of a table or table entry that is not tightly
structured is the number of bits from the leftmost bit of the first
word occupied by the table or table entry to the rightmost bit of the
last word occupied by the table or table entry. The BITSIZE of a
tightly structured table entry is <bits-per-entry>. The BITSIZE of a
tightly structured table is the number of bits from the leftmost bit of
the first word cccupied by the table to the rightmost bit of the last
entry, where the last entry occupies <bits-per-entry> bits. Note: the
BITSIZE of a <table-entry> whose type class is not table is the BITSIZE
of the item specified by the underlying <{item~type-~description>.

Block: The BITSIZE of a bleock is WN * BITSINWORD, where NN is the
number of words the block occupies.

97

Downloaded from http://www.everyspec.com

MIL-STD-158G9C (USAF)
6 July 1984

Constraints: .

A BITSIZE function must not be applied to a <size-argument> whose size in
words exceeds MAXINT{MAXINTSIZE)/BITSINWORD.

A BYTESIZE function must not be applied to a <{size-argument> whose size in
words exceeds MAXINT(MAXINTSIZE)/BYTESINWORD.
6.3.9 BOUNDS FUNCTIONS
Syntax:
{bounds-function> ::= <which-bound>

(<bounds-argument> ,
{dimension-number>)

LBOUND .

<which-bound>»

.
n

| UBOUND
<bounds-argument > := <table-name> (2.1.2)
| <table-type-name> (2.2)
<dimensicn-number? ::z <compile-time-integer-formula> (5.1.1)
Semantics: .

The LBOUND function returns the lower bound of the specified dimension of
the designated table. The UBOUND function returns the upper bound of the
specified dimension of the designated table. A <{dimension-nunmter> of zero
refers to the leftmost <dimension> in that table's <dimension-list>; a
{dimension-number> of one designates the next-to-leftmost <dimension> in the
list, ete. The type of the returned value 1is the type of the designated
dimension. If the table is a formal parameter with a * dimension, LBOUND will .
always return zero, and UBOUND will return NN-1, where NN is the number of
elements in that dimension of the actual parameter.

Constraints:
The <dimension-number> must be greater than or equal tc 0 and less than the
number of dimensionz in the designated table.
6.3.10 WWDSEN FUNCTION
Syntax:

NWDSEN (<nwdsen-argument>)

. ®

{nwdsen-function>

e GG e e

Downloaded from http://www.everyspec.com

MIL-STD-1589C (USAF)

6 July 1984
. {nwdsen-argument> t:= <table-nanme> {(2.1.2)
| <table-type-name> (2.2)

Semantics:

The NWDSEN function returns the number of words of storage allocated to each
entry in the named table or table type. The return type is S with default
size,

6.3.11 STATUS INVERSE FUNCTIONS

Syntax:

FIRST (
{status-inverse-argument>)

. | LAST |

{status-inverse-argument>

{status-inverse-functiony> ::

{status-inverse-argument> ::= <status-formula> (5.4)
i <status-type-name> {(2.1.1.6)
Semantics:
. The FIRST function gives the value of the lowest-valued <status-constantd> in
the <{status-list> associated with the <status-inverse-argument>. The LAST
function gives the value of the highest-valued <status-constant> in the <status-

list> associated with the <{status-inverse-argument>.

The return value has the type indicated by the {status-inverse-argument>.

. 6.3.12 NENT FUNCTION

Syntax:
<nent-functiony t:= NENT (<nent-argument>)
{nent-argument> i:= <table-name> (2.1.2)
i <{table-type-name> (2.2)
Semantics:

The <nent-function> returns the number of entries in the designated table.
For multi-dimensioned tables, the value returned is the product of the numbers
of entries of the individual dimensions. For tables with #* dimensions the type
of the value returned is S IMPLINTSIZE(MINSIZE(MAXTABLESIZE)). In all other

o .

Downloaded from http://www.everyspec.com

MIL~-STD=-1539C (USAF)

6 July 1984
cases the type is § TIWMPLINTSIZE(MINSIZE(nent)), where nent is the number of . .
entries in the table.

0 @

Syntax

<bit-conversion>

{bit-type-conversion)

Downloaded from http://www.everyspec.com

MIL-STD-1589C (USAF)

6 July 1984
7.0 TYPE MATCHING AND TYPE CONVERSIONS
iz <bit-type-conversion>
+ <rep-conversion>
i1z (% <bit-type-description> %) (2.1.1.4)
i <bit-type-name> (2.1.1.4)

{integer-conversion>

{floating-conversion>

{fixed-conversion>

{character-conversion>»

<(status-conversion)>

{pointer-conversion>

<table-conversion>

e

B
(* <integer-type-description> %) (2.1.1.1)
{integer-type-name> (2.1.1.1)
S
u
(* <floating-type-description> #*) (2.1.1.2)
{floating-type-name> (2.1.1.2)
F
(* <fixed=-type-description) *) (2.1.1.,3)
{fixed-type-name> (2.1.1.3)

(* <character-type-description> *)(2.1.1.5)

{character-type-name> (2.1.1.5)
C

(* <status-type-name> *) (2.1.1.6}
<{status-type-name> (2.1.1.6)

(* <pointer-type-description> %) (2.1.1.7)

<pointer-type-name> (2.1.1.7)

P

(* <table-type-name)> #*) {(2.1.2)

<table-type-name> (2.1.2)
101

Downloaded from http://www.everyspec.com

MIL~STD-1589C (USAF)
6 July 1984

W
=
i
g

{rep-conversion>
Semantics:

In Section 2.1, the definition of type was given. In some cases, implicit
conversions will be performed to achieve type equivalence. In this section, for
each type class, rules will be given regarding when two types are the same, when
an object of one type will be implicitly converted to another type, and when and
how an object of one type can be explicitly converted to another type. Implicit
conversions will never be performed on arguments to explicit conversions or when
the types of the data objects are required to match exactly. With all the
conversions {both implicit and explicit), if the value produced after conversion
is not in the range of values of the type being converted to, the conversion is
illegal.

For purposes of type equivalence, a user-defined <{type-name> is considered
an abbreviation for its specification.

4 <formula> may be explicitly converted to another type by enclosing it in
parentheses and preceding it with appropriate conversion. Note that if the
conversion does not consist of a single letter or name, it must be enclosed in
(* and #),

Omitted attribute specifiers in type conversions imply the same default
values as for declarations of those types.

Type equivalence and conversion rules for each of the J73 type classes are
as follows:

Bit (B)

Type Equivalence: Two bit types are equivalent if their size attributes
are equal.

Implicit Conversions: A bit string will be implicitly converted to a bit
string with a different size attribute, with truncation
on the left or padding with zeros on the left. Implicit
truncation is not permitted when the syntax requires a
<{boolean-foruula>.

Explicit Conversions: Any data object except a block may be explicitly
converted to a bit string with a <bit-conversion>. A
{bit-conversion> may be either a <bit-type-conversion>
or a <rep-conversion>.

A <bit-type-conversion> to a type B NN takes the
rightmost NN bits of the data object's representation.
If there are fewer than NN bits, the object will be
padded on the left with zeroces. The default value for
NN is 1. 4 <bit-type-conversion> may be applied to a
data object of any type. If the object being converted
is a table or table entry, all "filler" bits (i.e., bits

102

I e

Downloaded from http://www.everyspec.com

MIL-STD-1589C (USAF)
6 July 1984

that contribute to the size of the table but that are
not part of the component objects' sizes as declared)
are included in the string. If the object to be
converted is of type class character, filler bits
between bytes and unused bytes following the end of the
string are not included.

A <rep-conversion> provides a means of obtaining the
representation of a data object. A <rep-conversion>
treats a data object as a bit string whose size is the
number of bits actually occupied by the object. This
includes all filler bits and the bits in the unused {but
allocated) by*es following the ends of character
strings. For all objects whose type class is table, the
number of bits in the bit string is the same as the
BITSIZE OF THE OBJECT. For all <table-entries> whose
type class is not table, the number of bits in the bit
string 1is the total number of bits {including filler
bits) in the table entry. A <{rep-conversion> can appear
in the target of an assignment statement (see Section
6.1). A <rep-conversion> can be applied to <named-
variables> only; further, it cannot be applied to tables
declared with * dimensions, to entries in parallel
tables, or to tables whose size in bits exceeds MAXBITS.

Integer (S and U)

Type Equivalence: Two integer types are equivalent if they are both S or U
and if their size attributes are equal.

Implicit Conversions: An integer type will be implieitly converted to any
other integer type.

Explicit Conversions: An <integer-conversion> is used to explicitly convert a
data object to an integer type. The conversion ocan be
applied to <real-literals> and to objects of bit,
integer, fixed, float, and pointer only.

A bit string will be treated as representing the value
of the integer type if the size of the bit string is
less than or equal to the BITSIZE of the integer type.
Otherwise, the conversion is illegal. If the size of the
bit string is less than the BITSIZE of the integer type,
the bitstring will be padded on the left with zeroes.

An integer, fixed, or floating data object will be
converted to the integer type, with truncation or
rounding if specified.

Converting a pointer to an integer type is equivalent to
first converting the pointer to type B BITSINPOINTER and
then converting the bit string to integer.

103

4IL-STD-1589C (USAF)
6 July 1984

Floating (F)

Type Equivalence:

Jmplicit Conversions:

Explicit Conversions:

Fixed (a)

Type Equivalence:

Implicit Conversions:

Downloaded from http://www.everyspec.com

Two floating types are eguivalent if their precision
attributes are equal.

A floating type will be dimplicitly converted %o a
floating type of the same or greater precision
regardless of the round-or-truncate attribute. a <{real-
literal> will be implicitly treated as a <floating-
literal> in the contexts specified in Section 8.3.1.
(Implicit floating conversions do not change numeric
values although they may cause a change in how the value
is represented.)

4 <floating-conversion> is used to explicitly convert
a data object to a flocating data type. The conversion
can be applied to <real-literals> and to objects of bit,
integer, fixed, and float types only.

A bit string will be treated as representing the value
of the floating type if the size of the bit string
equals the BITSIZE of the floating type. Otherwise the
conversion is illegal.

An integer, fixed, or floating data object will be
converted to the floating type, with truncation or
rounding as specified in the <floatingeconversion>.
Rounding and truncation are performed with respect ¢to
the implemented precision of the type specified by the
{floating-conversion>.

Two fixed point types are equivalent if their scale
attributes are equal and their fraction attributes are
equal.

A fixed point type will be implicitly converted to
another fixed point type if the scale and fraction
attributes of the target type are both at least as large
as those of the source type. A <real-literal> will be
implicitly treated as a <fixed-literal> in the contexts
specified in Section 8.3.1. Implicit fixed conversions
do not change the numeric value represented except when
the implemented precision of the result value i3 less
than the implemented precision of the value being
converted (see Section 2.1.1.3); in this case, rounding
or truncation occurs with respect to the implemented
precision of the converted value. This situation cccurs
only when assigning to a packed fixed table item (in an
assignment statement, 1loop <controcl-variable>, table
preset, or output parameter); the <round-or-truncate>

104

Explicit Conversions:

Character {(C)

Type Equivalence:

Implieit Conversions:

Explicit Conversions:

Pointer (P}

Type Equivalence:

Implicit Conversions:

Downloaded from http://www.everyspec.com

MIL-5TD-1589C (USAF)
6 July 1984

attribute of the table item determines whether the
assigned value is rounded or truncated.

A <fixed-conversion> is used to explicitly convert a
data object to a fixed point data type. The conversion
can be applied to <real-literal> and to objects of bit,
integer, fixed, and float types only.

A bit string will be treated as representing the value
of the specified fixed point type if the size of the bit
string equals the BITSIZE of the fixed point type.
Otherwise, the conversion is illegal.

An integer, fixed, or floating data object will be
converted to the specified fixed point type, with
truncation or rounding as specified in the <{fixed-
conversion>. Rounding and truncation are performed with
respect to the implemented precision of the type
specified by the <fixed-conversion>.

Two character types are equivalent if their size
attributes are equal.

A character string will be implicitly converted to a
string with a different size attribute, with truncation
on the right or padding with blanks on the right.

A <{character-conversion> is used to explicitly convert a
data object to a character data type. The «c¢onversion
can be applied to objects of type bit or character only.

A bit string will be treated as representing the value
(excluding filler bits between bytes) of the character
type if the size of the bit string equals the BITSIZE of
the character type. Otherwise the conversion is
illegal.

A character string will be converted to type C NN by
taking the leftmost NN characters. If there are fewer
than NN characters, the value is padded on the right
with blanks.

Two pointer types are equivalent if they are both
untyped pointers or if they are both typed pointers
referring to the same <{type-declaration>.

A typed pointer will be implicitly converted to an
untyped pointer.

105

MIL-STD-1589C (USAF)
6 July 1984

Explicit Conversions:

Status

Type Equivalence:

Implicit Conversions:

Downloaded from http://www.everyspec.com

A <pointer-conversion> is used to explicitly convert a
data cbject to a pointer type. The conversion can be
applied to bit, integer, or pointer data objects only.

4 Dbit string will be treated as representing the value
of the pointer type if the size of the bit string equals
the BITSIZE of the pointer type. Otherwise the
conversion is illegal.

Converting an integer to a pointer is equivalent to
first converting the integer to type B BITSINPOINTER and
then converting the bit string to a pointer.

Converting a pointer to a different pointer type means
that the pointer will be considered as a pointer of the
specified type.

Two status types are equivalent if (1) they both have
default representation, their size attributes are the
same, and both <{status-lists> contain the same <{status-
constants?® in the same order, or (2) they both have
identical programmer-specified representations, their
size attributes are the same, and both <status-lists>
contain the same <status-constants>.

4 status type will be implicitly converted to a status
type that differs only in its size attribute.
Furthermore, a status constant belonging to more than
one status type is implicitly disambiguated in the
following contexts: (1) when it is the source value of
an assignment statement, it takes the type of the target
variable; (2) when it is an actual parameter, it takes
the type of the corresponding formal parameter; (3) when
it is in a table <subscript> or <preset-index-
specifier>, it takes the type of the corresponding
<dimension> in that table's declaraticn; (4) when it is
a loop <initial-value>, it takes the type of the
{econtrol-variable>; (5) when it is in an <{item-preset>
or <{table-preset>, it takes the type of the item or
table item being initialized; (6) when it is an operand
of a <relational-operator>, it takes the type of the
other operand if that type 1is uniquely determined
independent of the former operand; (7) when it is in a
{case-index-group>, it takes the type of the {case-
selector-formula>; and (8) when it is a <lower-bound> or
<upper-bound>, it takes the type of the other bound if
that type is uniquely determined independent of the
former bound.

106

e R B R

Downloaded from http://www.everyspec.com

MIL-5TD-1589C (USAF)

6 July 1984
Explicit Conversions: 4 <status-conversion> is used to explicitly convert a
data object to a status type. The conversion can be

applied to bit or status data objects only.

A Dbit string will be treated as representing the
representational value of the status type if the size of
the bit string equals the BITSIZE of the status type and
the value of the bit string is within the range of
values of the status type. Otherwise the conversion is
illegal.

A <status-conversion> may be used to assert the type of
a status object. This will be required when a status
constant belongs to more than one type and it is used in
a context other than those enumerated above under
implicit conversions. Except for status objects whose
types differ only in their size attributes, a status
object cannot be converted to a different status type
. without first converting it to a bit string.

Table

Type Equivalence: Two tables have eqguivalent types if they are both
ordinary or both specified, their <structure-specifier>
attribute 1is the same, they have the sawe number of
dimensions, they have the same number of elements in

. each dimension, they have the same number of items in
the same textual order in each entry, the types
(including attributes) of the items are equivalent, the
(explicit or implied) packing specifier on each of the
items is the same (for ordinary tables), the 'QRDER
directive is either present in both tables or absent in
both tables, the {words-per-entry> attribute is the same
(for specified tables), and the location-specifiers of
the items are the same (for specified tables). (Note
. that the names of the items, as well as the types and
bounds of the dimensions, need not be the same.) A table
entry is considered to have no dimensions. 4 table
whose entry contains an item-declaration 1is not
considered equivalent in type to a table whose entry is
declared using an unnamed item description.

A <dimension> of * in a formal-parameter table has the
Same number of elements as the corresponding <dimension>
(which may be a <dimension> of #*) in the corresponding
actual-parameter table,

Implicit Conversions: No implicit conversions are performed.

Explicit Conversions: A bit or table data object may be explicitly converted
to a table type with a <table-conversion>.

. 107

MIL-STD=-1589C (USAF)
6 July 1984

Downloaded from http://www.everyspec.com

A bit string will be treated as representing the value
of the table type if the size of the bit string equals
the BITSIZE of the table type. Otherwise the conversion
is illegal.

A <{table-conversion> may be applied to a table object of
that type merely to assert its type. (A table object
cannot be converted to a different table type without
first converting it to a bit string).

108

R R R R R

Downloaded from http://www.everyspec.com

MIL-3TD-1589C (USAF)

6 July 1984
. 8.0 BASIC ELEMENTS
8.1 CHARACTERS
Syntax:
<character> 1= <letter>
| <digit>
i <mark>
i <other-character>
<{letter> it= A ¢ B } C V D | E | F
PG 0 H LT L Jd 1 K 1L
¢ M 4 Nt O ! P { G ! R
I T T A R A A A ¢
VY 4 Z
<digit> is= 0 1 V2 V3 4V 4 {5
‘II'} 6 0 7T 1 8 19
<mark> N T R RV S S
T S P

. i $ | blank

Semantics:

The text of a J73 <complete-program> is a continuous stream of <{characters>.
However, in some contexts, the end of an input record has significance (see
Section 8.2).

Note that in the standard character set for the languaxe <letters> are
defined to be upper case letters only. <Marks> are used either alone or in
conjunction with other characters as operators, delimiters, and separators.
<0Other-characters> are the remaining implementation-dependent characters, which
are accepted within <{character-literals> and <{comments>, and which may also be
used as described below. Each implementation must define these characters, as
well as the ordering of all <characters> in a collating sequence.

Some of the standard characters are not universally available; therefore,
. the following standard alternates are defined:

109

Downloaded from http://www.everyspec.com

MIL-STD-1589C (USAF)

6 July 1984

3tandard Character Alternates
¢ vor?
' => or _
" £
! v
* z
: . 3

If any of the above standard characters are unavailable on a particular machine,
one of the recommended alternates for that character must be used. {The first
column of alternates is intended for the CDC standard 63 and 64 character sets;
the alternates ? and are intended for the Univac 1108.) If the : is replaced,
the % must also be replaced.

An implementation that has both lower and upper case letters available may
permit use cf lower case letters outside <character-literals> and <comments>
provided that the implementation always considers them interchangeable with
their corresponding upper case letters (e.g., XX, Xx, xX, and xx denote the same
name). In all <character-literals> and <comments>, including those constructed
via <define-calls>, lower case letters must Dbe treated as distinet <other=-
characters>.

An implementation that has square brackets available may allow [to be used
for (* and] to be used for #) but may not prohibit the use of the (% and *#*).

Constraints:
If a left bracket is substituted for (*, then a right bracket must be

substituted for the corresponding *). 1If a right bracket is substituted for *),
then a left bracket must be substituted for the corresponding (*.

8.2 SYMBOLS

Syntax:
<symbol> i:= <name> (8.2.1)
i <reserved-word> (8.2.2)
| <operator> (8.2.3)
i {literal> (8.3)

i <status-constant> {(2.1.1.6}

110

R R R R R

Downloaded from http://www.everyspec.com

MIL-STD-1589C (USAF)

6 July 1984
. i <comment> (8.4)
i <define-string> (2.4)
i <define-cally (2.4.1)
i <letter> (8.1)
i\ <separator> (8.2.4)

Semantics:

{Characters> are combined into <symbols> to form the vocabulary of the
language. <Symbols> are indivisible units and cannot contain blanks, except as
noted in Section 8.5. Only <comments>, <define-strings>, define paraumeters
enclosed in quotation marks, <bit-literals>, and <character-literals> may extend
across mwmultiple input records; all other symbols are terminated by the end of
an input record.

8.2.1 NAMES

Syntax:
<name> iz (letter-or-j>
<letter-digit-$-or-prime>...
. {letter-or-$> 1= <letter>
i $
<{letter-digit-$-or-prime> iz <{letter> {8.1)
i <digit> (8.1)

@ s

Semantics:

<{Names> are words having programmer-supplied spellings. <Names> are used to
denote entities in the {complete-program).

Only the first 31 characters of a J7% <name> are used to determine
uniqueness. Additional characters are permitted, but are ignored.

For external names, an implementation may further restrict the number of
initial charaecters that determine uniqueness.

A dollar sign in a <name> is translated to an implementation-dependent
representation. This translation of the dollar sign permits the use of a

@

Downloaded from http://www.everyspec.com

MIL-STD-1589C (USAF)
6 July 1984

character in a <name> that might otherwise be unrepresentable in the language.
If, for example, external names in a given system were prefixed by the character
'.' a J73 implementation on that system might choose to represent '$' when it
occurs in a name by the representation for '.'. Thus, the name '$$ABC'
occurring in a source program would be translated '..ASC'.

Constraints:
4 <name> cannot have the same spelling as a <reserved-word> (see Section

8.2.2).

B.2.2 RESERVED WORDS

Syntax:

{reserved-word> t:z ABORT | ABS | AND | BEGIN | BIT
!\ BITSIZE | BLOCK | BY 1 BYREF
{ BYRES | BYTE | BYTESIZE | BYVAL
! CASE { COMPOOL | CONDITION®*
{ CONSTANT | DEF | DEFAULT | DEFIKNE
! ELSE | ENCAPSULATION® | END . EQV
! EXIT | EXPORTS* | FaALLTHRU | FALSE
i FIRST | FOR | FREE* | GOTO
i HANDLER* | IF | IN® | INLINE
{ INSTANCE | INTERRUPT* | ITEM
i LABEL , LAST | LBOUND | LIKE
! LOC | MOD ! NENT | NEW*
) NEXT | NOT | NULL |
| NWDSEN | OR | OVERLAY | PARALLEL
i POS | PROC | PROGRAM | PROTECTED®
i READONLY* | REC | REF | REGISTER®
i RENT ! REP | RETURN | 3GN
{ SHIFTL | SHIFTR | SIGNAL*

112

Downloaded from http://www.everyspec.com

MIL-STD-1589C (USAF)

6 July 1984
i START | STATIC | STaTUS | STOP
i TABLE |} TERM | THEN | TO*
i TRUE | TYPE | UBOUND | UPDATE®
i WHILE | WITH® | WORDSIZE
i WRITEONLY* | XOR | ZONE*®

Semantics:

{Reserved-words> have language-defined meanings and cannot be used as
<names>.

Those reserved words followed by an * in the above list are reserved in

order to maintain upward compatibility with future extensions to the language
and currently have no umeaning in J73.

8.2.3 OPERATORS

Syntax:

{operator>

.
3

i= <arithmetic-gperator>
i <bit-operator>

i <relational-operator>
| <dereference-cperator>

<assignment-operator>

{arithmetic-operator> {plus-or-minus>

| <multiply-divide-or-mod>

i <multiply-orwdivide>

T
<plus-or-minus> HET S R
{multiply-divide-or-mod> 3= % 1/ | MOD
<multiply-or-divide> HEE R
{bit-operator> iz <logical-operator>

I NOT

113

Downloaded from http://www.everyspec.com

MIL-STD-1589C (USAF)
6 July 1984

<logical-operator> i AND |} OR | XOR | EQV

<equal-or-not-equal-cperator>

<relational-operator>

<1 >0 <=1 >=

= O

<equal-or-not-equal-operator>

"
®

{dereference-cperator>

{assignment-operator>

e
e
1
{

Semantics:

The meanings of these operators are given in Sections 4, 5, and 6. The
order of combination of operators and coperands is determined by parentheses and
by the operators' precedence. The operation implied by an operator at one
precedence level is combined before the operation implied by an operator at a
lower level. Within a particular precedence level, operations are combined from
left to right if the !LEFTRIGHT directive is in effect and in an implementation-
dependent order if the !REARRANGE directive is in effect,

Precedence of operators is defined by the syntax of the language and is
summarized below:

6 @, subscripting, function calls
5 %%

4 %, /, MOD

3 +, -

2 =, <>, &, >, €=, >=

1 NOT, AND, OR, EQV, XOR

0 assignment

8.2.4 SEPARATORS
Syntax:

<{separator> iz (1) L (2 0w

114

Downloaded from http://www.everyspec.com

MIL-STD-1589C (USAF)

6 July 1984
’ . Semantics:
<Separators> are used for the following purposes in J73:

() Expression grouping, list delimiters, status
constants, position brackets, subscripts, case
labels

(2 %) Type conversions

Statement name, case label, and preset index
terminator; loop control separator; overlay,
dimension, subrange, and parameter separator

' List separator

Statement, declaration, and directive terminator

e

. ! Directive indicator, formal define parameter marker

8.3 LITERALS

Syntax:
<literal> iz <numeric-literal) (8.3.1)
. i <bit-literal> (8.3.2)
i <boolean-literal> (8.3.3)
i <character-literal> (B.3.4)
i <pointer-literal)> (8.3.5)

. Semantics:

<Literals> are data objects whose value and type are inherent in the form of
the <symbol> itself. Their values are known at compile time, and, 1like other
compile-time values, cannot be altered during execution.
8.3.1 NUMERIC LITERALS

Syntax:

<numeric-literal>

<integer-literal>
i <flecating-literal’

| <fixed-literaly

@ s

Downloaded from http://www.everyspec.com

MIL-STD-1589C (USAF}

6 July 1984
{integer-literal> t:= <number>
<number> t:= <digit>... (B.1)
{floating-literal> 1:= <{real-literal>
{real-literal> t:- <digit>... <exponent> (8.1}
i <{fractional-form>
f<exponent>]
<{exponent> 11z E [<sign>] <number>
<sign> iz o+ | -
{fractional-form> 11z <digitd>... . (8.1)
i [<digit>...] . <digit>... (8.1)
<fixed-literal> t:z <real-literal>
Semantics:

An <integer-literal>», LL, denotes a decimal value. Its type is S NN, where
NN is IMPLINTSIZE{MINSIZE(LL}).

The type of a <real-literal> or a <{real-literal> preceded by a <sign> is
determined by the context in which the literal appears, namely:

o when the 1literal is used as a preset value, it is implicitly
converted to the type of the object being preset;

o when the literal is used as an azsignment value, it is impliecitly
converted to the type of the target being assigned a value;

o when +the literal is an operand of an infix relational or numeric
operator and the other operand is not a real-literal, it is
converted to the type of the other operand;

o when the literal is an actual parameter, it is converted to the
type of the formal parameter;

o when a literal is the <initial-value> of a locp <control-clause>,
it is converted to the type of the {contrel-variable>;

o when the literal is the argument of an explicit integer, fixed, or
floating conversion, it is converted to the specified type.

If the type of an optionally signed <real-literal> 1s not determined
contextually, it is considered to be a floating type with default precision.

116

Downloaded from http://www.everyspec.com

MIL-STD-1589C (USAF)
6 July 1984

A <real-literal> denotes a decimal value. If an {exponent> is present, the
decimal value preceding the <exponent> 1is multiplied by 10 to the value
Specified in the <exponent>.

For <real-literals>, non-<exponent> digits in excess of MAXSIGDIGITS will be
treated as zeroes in computing the fixed or floating value to be represented.

Contextual determination of the type of a real-literal will not be affected
by the presence or absence of the <rearrange-directive>.

Constraints:

{Real-literals> may be implicitly converted to fixed or floating values
only.

The value of an <integer-literal> with size SS must not exceed MaXINT(SS).

The wvalue of a <floating-literal> with precision PP must not exceed
MAXFLOAT(PP).

The value of a <fixed-literal> with scale S$S and fraction FF must not exceed
MaXFIXED(SS,FF).

Examples:

ITEM FF F 24 = -0.1; "equivalent to presetting
with (*F 24%) (.0,1)"

ITEM RR F,R 24 = =0.1; "-0.1 is rounded to a 24 bit
mantissa®

ITEM TT F,T 24 = «0.1; ".0.1 is truncated toward minus
infinity"

CONSTANT ITEM CC F,R 24 = 2.5;

ITEM JJ F,R 24 = CC + .3; ".3 is converted to CC's type"

IF RR > .3; ... ".3 is rounded to a 24 bit mantissa"

Note that if 1II is an integer item, then II = 2.5 is illegal, since a <real-
literal> cannot be implicitly converted to an integer value.

8.3.2 BIT LITERALS

Syntax:
<bit-literal> ii= <bead-size> B * <bead>... !
{bead-size> iz 1 2 0 3 1 4 15
<{begad> 11z Ldigit>
i A I B i1 C I DI E | F
i G 1 H 1 I \ J 1 K I L
117

Downloaded from http://www.everyspec.com

MIL-STD-1589C (USAF)

6 July 1984
i M N 1 O} PV Q| R
i S 3T { U 1 W

Semantics:

A <bit-literal> represents a bit string value. A <bit-literal> is composed
cf a string of <beads> whose <bead-size> in bits is indicated in the
specification of the literal. The total size of the <bit-literal> is the <{bead-
size> times the number of beads encleosed within the primes.

The <beads> of a <bit-literal> can be specified as one to five bits in size.
The <digit> preceding the B indicates the <bead-size>. Only those <beads> whose
value will fit in the <bead-size> indicated are permitted. The digits 0 - §
represent their actual values; the letters A - V represent the values 10 - 31
(see Table 8-1}.

8.3.3 BOCLEAN LITERALS
Syntax:
<boolean-literal> ::= TRUE
| FALSE
Semantics:

<Boolean-literals> represent the two possible truth values,. TRUE is
equivalent to 18'1', and FALSE is equivalent to 18'0'.

8.3.4 CHARACTER LITERALS
Syntax:
<{character-literal> 12z ' <character>..,. ' {8.1)
Semantics:
{Character-literals> denote strings of character values.
<{Character-literals> c¢an contain any <character> (including blank) that is
representable in an implementation. A prime character (') is represented within
a <character-literal> by two consecutive primes. The size of a <character-
literal> in bytes is the number of characters represented within the containing

primes (two consecutive primes represent one character). The encoding of
characters is implementation-dependent.

118

Downloaded from http://www.everyspec.com

MIL-STD-1589C (USAF)

& July 1984

Bead Values

Bit-Literal

TABLE 8-1.

D S ol e e D i B A D e i e

Binary
Value

|
|
[}
I
i
1]
i
1

Minimum
Bead
Size

Bead

Binary |
Value

Minimum
Bead
Size

1
i
1
|

Bead

10100
11000
11001
11010
11011

10000
10001
10010
10011
10101
10110
10111

[
I
1
]
L]
t
|
|
1
|
1
i
1
1
L]
]
1
1
|
|
I
i
|

5
5
5
5
5
5
5
5
5
5
5
5

11
100
101
111

1000
1010

1
1
2
2
3
3
3
3
4
y
3
y

o — 3] ™ = n o ~ ao o = M

11100

5

&)

11101

[a]

i 11110

5

£a]

1M1

el e e L L | ey yp——

119

Downloaded from http://www.everyspec.com

MIL-STD-1589C (USAF)
6 July 1984

8.3.5 POINTER LITERALS

Syntax:

.
.
n

{pointer-literal> NULL
Semantics:

Any pointer item, regardless of its attribute, can have the value NULL,
which indicates that the item points to no object.

8.4 COMMENTS

Syntax:
{comment> ::= " [<character>...] " (8.1)
! % [<character>...}] % (8.1}
Semantics:

A <{comment> has no semantic effect.

A <comment> in a <{define-string> or <actual-define-parameter> is interpreted
as part of the character sequence to be substituted when the {define-call> is
expanded.

A <comment> can appear before any <symbol>, subject to the constraints
below.

Constraints:

A <comment> delimited by a quotation mark (") is not permitted between a
<define-name> and a <define-string> in a <define-declaration>, or within the
<actual-parameter-list> in a <define-call’>.

A <comment> delimited by a quotation mark cannot contain a quotation mark,
and a <comment)> delimited by a percent character (%) cannot contain a percent
character.

8.5 BLANKS

One or more blanks can be placed between <symbols>. Blanks occurring
between <{symbols> have no semantic meaning.

Constraints:

Blanks cannot appear within <symbola> except 1I1n <character-literals>,
{define-strings>, <define-calls>, and <comments>.

120

Downloaded from http://www.everyspec.com

MIL-STD-1589C (USAF)
6 July 1984

One or more blanks must appear between any two <{symbols> if the absence of
blanks could cause them to be interpreted as a single legal <{symbol>, except

that whether (* represents one or two <symbols)> is contextually determined,
e.g., (* represents two symbols in the following contexts:

TABLE AA (*) ...;
ITEM ... POS (%, 0);

121

Downloaded from http://www.everyspec.com

MIL-3TD-1589C (USAF)

6 July 1984
9.0 DIRECTIVES .
Syntax:
{directive> t1+= <compool-directive’> (9.1)
! <copy-directive> (9.2.1)
| <skip-directive> (9.2.2)
i <begin-directive> (9.2.2)
i <end-directive> (9.2.2)
| <linkage-directive> (9.3)
| <trace-directive> (9.4)
| <interference-directive> (9.5) .
i <reducible-directive> (9.6)
| <nolist-directive> (9.7.1)
i <list-directive> {9.7.1)
i <eject-directive> (9.7.1) .
! <listinv-directive> (9.7.2)
! <listexp-directive> (9.7.2)
| <listboth-directive> (9.7.2)
| <base-directive> (9.8) .
i\ <isbase-directive> (9.8)
! <drop-directive> {(9.8)
i <leftright-directive> (9.9)
! <rearrange-directive> (9.9)
i <initialize-directive> (9.10)
| <order-directive> (9.11)
Semanties:

<Directives> are used to provide supplemental information to a compiler
about the <complete-program>, and to provide compiler control. I

122

Downloaded from http://www.everyspec.com

MIL-STD=-1589C (USAF)
6 July 1984

Each implementation can specify <{directives> in addition to those described
here, but each must conform to the general form for a <directive>. {Directives>
begin with an exclamation point and terminate with a semicolon, and the word
following the exclamation point must not duplicate that of any language-defined
directive.

<Directives> are permitted to appear in J73 programs in the following
places: immediately after BEGIN, END, START, DEF, REF, ELSE, FALLTHRU, and
semicolon symbols, and in <case-statementsy immediately following a <case-index-
group> or the first colon in a <default-optiond>. (None of these uses are
indicated in the syntax equations.) Note, however, that certain specific
directives place further restrictions on where they can appear.

Like <define-calls>, <directives> each perform their function but have no
other effect on syntactic analysis. For example, in the seguence "START <copy-
directive> <compool-directive>", validity of the visible {ecompool-directive> can
only be determined after the substitution specified by the <copy-directive>.

Directives affect program source from their occurrence to either end of
module or occurrence of a superseding directive, unless different limits are
explicitly specified for the particular type of directive.

9.1 COMPOOL DIRECTIVES

Syntax:

' COMPQOOL
[<compool-directive-list>] ;

{compool-directive> HH

{ecompool-directive-list> ::= [<compool-file-name>]
{compool-declared-name>, ...

([<compool-file-name>])

<compcol-declared-name> ::= <named (8.2.1)
i (<name>) (8.2.1)
<compool-file-name> ::= <character-literal> (8.3.4)

Semantics:
A <compool~directive> is used to access definitions in a compool module.

If the <compool-directive-list> 1is omitted, all <names> in an implicit
unnamed compeol are to be made available,

A <ecompool-file-name> is an implementation-dependent file name that
specifies the desired compool. If it is omitted, an impliecit unnamed compool is
assumed. 4 <compool-file-name> enclosed in parentheses implies that all <names>
in the compool are to be made available., (This does not include <names> used in
the compool that were obtained from other compools.)

123

Downloaded from http://www.everyspec.com

MIL-STD-1589C (USAF)

6 July 1984
If the <compool-directive> contains a list of <compool-declared-names>, only
those names (except as noted below) will be made available. .

If a <compool-declared-name> is the name of an item, table, or block
declared with a <type-name>, that <{type-name> is also made available if 1t is
declared in that compool. (For pointer items, this includes the nawe of the
pointed-to-type). If a <{compool-declared-name> is a <table-item=name>, the name
of the table in which it is contained is also made available. If a table name
is made available, any <status-lists> and <{status-type-names> associated with
its <dimensions> are also made available, provided they are declared in the
designated compool.

If a <compool-declared-name> is the name of a table or block and is
parenthesized, all names declared in the table or block will be made available,
as well as all type names referenced in the table or block, provided they are
declared in the designated compool. If a <compool-declared-name> is a <{table-
type-name> or <block-type-name>, the names of these components will be made
available whether or not the name is parenthesized.

If a status item name is made available, its associated <status-list> and .
{status-type-name> (if any) will also be made available, if they were declared
in the designated compool.

If a <compool-declared-name> is the name of a subroutine, any <{type-names>
associated with that subroutine's formal parameters and return value will also
be made available, if they are declared in the designated compool.

Constraints: .

A <compool-directive> must only occur immediately after START or immediately
following another <compocl-directive>.

The <compool-declared-names> must have been declared in the designated
compoocl.

A <compool-declared-name> cannot be the name of a component declared in a
(type-declaration>, nor can it be the name of a formal parameter of a .
subroutine.

9.2 TEXT DIRECTIVES

3.2.1 COPY DIRECTIVES

Syntax:

{copy=-directive> = 1COPY

{¢haracter-literal> : (8.3.4)

-
..

Semantics:

The <copy-directive> is used to copy the contents of a text file into a
program. The <copy-directive> can be viewed as a <(define-call>; it is expanded .

124

R R R RS

Downloaded from http://www.everyspec.com

MIL-STD-1589C (USAF)
6 July 1984

at the point of its occurrence by substituting the entirety of the file being
copied. The <character-literald is an implementation-dependent file name.

9.2.2 SKIP, BEGIN, AND END DIR:CTIVES

Syntax:
{skip-directive> ti= ISKIP ([<letter>] ; {8.1)
<{begin-directive> 1= IBEGIN [<letter>] ; (8.1)
{end-directive> 1= IEND

Semantics:

{Skip-directives> are used in conjunction with the following <begin-
directive> « <(end-directive> pairs in the same module to cause text enclosed by
such directive pairs to be ignored during compilation. 4 <skip-directive)> with
a <letter> activates all following pairs in which the <begin-directive> has the
same <letter>; a <skip-direective> with no <letter> activates all following
pairs, regardless of <letter>.

After an active <begin-directive> all symbols are ignored except nested
!BEGIN/'END symbol pairs and the !END symbol which terminates suppression.
Since the symbols are ignored, even <copy-directives> and <define-calls> are not
recognized as such. The nested !BEGIN/!END symbol pairs have no effect other
than pairing and neither these nor the terwinating 'END symbol are tested as to
whether their context would be valid if the text were not being suppressed.

{8kip-directives> that do not activate any <begin-directive>, and <begin-
directives> and <end-directives> not accounted for above, have no effect.

Constraints;
All <begin-directives> and <end-directives> in a <module> must be uniquely
paired within that <module>.
9.3 LINKAGE DIRECTIVES
Syntax:

<{linkage-directive> ii= !LINKAGE
<symbol>... ; (8.2)

Semantics:
The <linkage-directive> indicates that the specified subroutine does not

obey standard J73 linkage conventions. The <{symbol> string specifies the
implementaticon-dependent linkage type to be used in linking the procedure.

125

Downloaded from http://www.everyspec.com

MIL-STD=1589C (USAF)
6 July 1984

Constraints:

The <linkage-directive> must only occur in a <subroutine-declaration>
between the heading and the declaration or in a <subroutine-definition> between
the heading and the body.

If any <subroutine-declaration> or <subroutine-definition> contains a
{linkage-directive>, then every declaration or definition for that same
subroutine, whether in the same or different modules, must contain an equivalent
{linkage-directive>.

3.4 TRACE DIRECTIVES

Syntax:
{trace-directive> 1= 1TRACE
[<trace-control>]
{name’, ... ; (B.2.1)
{trace-control> i:= (<boolean-formula>) (5.2.2)

Sepantica:

The <trace-directive> provides a run-time facility to trace program flow and
to monitor data assignment. This "tracing" will be active from the lexical
point at which the <{trace-directive> occurs in the source until the end of the
scope containing the directive. Its effect extends into nested subroutines
declared within this lexical range of statements.

The <names> in the <trace-directive> are the names that will be traced,
i.e., certain uses of these names as described in the following sentences will
be noted in an implementation-dependent manner, for example on a symbolic output
file. For <statement-names>, tracing of the associated statement will be noted
each time the statement is fallen into or branched to. For <data-names>,
modification of the data object and its new value will be notfed. Modification
of a data object is considered to have occurred upon execution of an
<assignment-statememt> in which the data object is the target or upon return
from a subroutine to which the data object was passed as an <actual-ocutput-
parameter>. For <table-names>, modification of the entire table, a <{table-
entry>, or an item in the table will be noted. For <block-names>, modification
of any data contained in the block will be noted. For <subroutine-names>, each
call to the subroutine will be noted. If the subroutine containing the <trace-
directive> is named in the directive and the directive is placed immediately
after the <procedure-heading> or <function-heading>, entry and exit to that
subroutine will be noted.

If a <trace-control> appears in the <{trace-directive>, the <{trace-control>
formula will be tested dynamically at each use of a <name> as defined in the
preceding paragraph. The trace output 1is suppressed if the formula 1is
determined to be false. If the <trace-control> is omitted, it is considered to
be true.

126

R R T
Downloaded from http://www.everyspec.com

MIL-STD~1589C (USAF)
6 July 1984

If two or more active <{trace-directives> contain the same <{name>, then the
lexically latest one overrides the earlier ones for that <name>.

Constraints;
All <names> 1in the <trace-directive>, includinyg names used in the <trace-

control>, except for <statement-names> and {subroutine-names>, must have been
declared prior to their use in the <trace-directive>.

A <bit-formula> cannot be implicitly converted to the <boolean-formula} in a
{trace-control>.

9.5 INTERFERENCE DIRECTIVES

Syntax:
{interference-directive> ::= VINTERFERENCE
{interference-control> ;
{interference-control 1:= <data-name> : (2.6)

<data-name>,aoo (2 -6)

Semantics:
foviidnioviaddechedsed

The <interference-directive> informs the compiler that it cannot assume that
the storage associated with the name to the left of the colon is distinet from
the storage associated with the names to the right of the colon. In the absence
of an <{interference-directive> the compiler can make optimizations on the
assumption that distinet <data-names> refer to distinct storage locations. If
two <data-names> refer to the same storage location, these optimizations could
result in erroneocus code. If two <data-names> share the same storage, an
assignment to one name should affect the value of the other. If the compiler

optimizes on the assumption of non-interference, these semantics might not be
preserved.

The compiler is aware of storage overlapping as a result of <specified-
table-items> and as a result of the arrangement of data within a single overlay.
This overlapping need not be reported via an {interference-directive>. Other
instances of overlap, e.g., as a result of absoclute addresses in separate
overlays, must be stated by the use of an {interference-directive>.

Constraints:
An <interference-directive> must not follow a {statement>.

All <data-names> in the <interference-control> must have been declared prior
to their use in the <interference-directive).

127

R

Downloaded from http://www.everyspec.com

MIL-STD=-1589C (USAF)
6 July 1984

9.6 REDUCISBLE DIRECTIVES
Syntax:

{reducible-directive> :i= IREDUCIBLE ;
Semantics:

The <reducible-directive> 1is used to allow additional optimization of
function=-calls. 4 reducible function is one for which all e¢alls with
identically-valued actual parameters result in identical function values and
output parameter values, and which does not modify any data except actual ocutput
parameters and automatic data declared within its own body. If a <{reduciblew
directive> is used to designate such functions as reducible, the compiler may
detect the existence of such common calls, save the values returned frow the
initial ecall for use in place of any subsequent calls, and delete these
subsequent calls.

Constraints:

The <reducible-directive> must only occur in a <function-declaration>
between the heading and the declaration or in a <function-definition> between
the heading and the body.

If any <function-declaration> econtains a <reducible-directive>, then the
<function-definition> for that function, whether in the same or different
modules, must contain a <reducible-directive>.

9.7 LISTING DIRECTIVES

9.7.1 SOURCE-LISTING DIRECTIVES

Syntax:
{nolist-directive> :t:= INOLIST ;
<list-directive> ::= ILIST
{eject=-directive> te= VEJECT ;

Semantics:

Listing directives are used to provide source listing control information to
the compiler. The <nolist-directive> causes suppression of the source listing
beginning with the next source line, up to and including the next <list-
directive>, which causes the listing to be resumed.

The <eject-directive> causes a page eject of the source listing before
listing the following source lines. The <eject-directive> is ignored 1if the
source listing is suppressed.

128

Downloaded from http://www.everyspec.com

MIL-STD-1589C (USAF)
6 July 1984

9.7.2 DEFINE-LISTING DIRECTIVES

Syntax:
{listinv-directive> ti= ILISTINV ;
<listexp-directive> iz ILISTEXP ;
{listboth-directive> ::= ILISTBOTH ;

Semantics:

Define-listing directives allow programmer control over the text to be
ineluded in the source program listing for <define-calls>.

The text contained in the listing for a particular <define-call> depends on
the define-listing directive which was in effect at the point of the
corresponding <define-declaration> (not on the directive in effect at the point
of the <define-call>). If this directive was !LISTINV, then the listing
contains the text of the <{define-call>; if the directive was !LISTEXP, then the
listing contains the expanded string (the <define-string> after substitution of
<actual-define-parameters>); if the directive was (LISTBOTH, then the listing
contains both the invocation and the expansion.

Each define-listing directive is in effect from the lexical point at which
it appears to the end of the current scope or to the point at which the next
define-listing directive appears, whichever is first. The default define-
listing directive in effect at the beginning of every module is !LISTINV.

Constraint:

<{listinv-directives>, <listexp-directives> and <listboth-directives> must
not follow a <statement>.

Note:

The effect of a define-listing directive for a particular <define-call) is
independent of whether a <nolist-directive> is suppressing the source listing at
the point of the <define-declaration> being invoked.

9.8 REGISTER DIRECTIVES

Syntax:
<base-directive> t:= 1BASE <data-name) (2.6)
{integer-literal> ; (8.3.1)
{isbhase-directive> 1tz 1ISBASE <data-name> (2.58)
<integer-literal) ; (8.3.1)
<drop-directive> 1:= !DROP
{integer-literal> ; (8.3.1)

129

Downloaded from http://www.everyspec.com

MIL-STD~1589C (USAF)
6 July 1984

Semantics:

Register directives affect target-machine register allocation. Each of
these three directives uses an <integer-literal> in a target-machinewdependent
way to specify which register is affected.

The <base-directive> loads the specified register with the address of the
object corresponding to the <{data-name>.

The <isbase-directive> directs the compiler to assume that the specified
register contains the address of the data object corresponding to the <data-
name>, but to take no action to guarantee it.,

The <drop-directive> frees the specified register for other use by the
compiler in generating code for subsequent statements. 3Both !BASE and ! ISBASE
cause the compiler to dedicate the register to the value it currently contains
until !DROP or the end of the current scope is encountered.

Register directives may be ignored in implementations for machines on which
register allocation is not meaningful.

9.9 EXPRESSION EVALUATION ORDER DIRECTIVES

Syntax:
(leftright-directive> :+= JLEFTRIGHT ;
{rearrange-directive> t:= YREARRANGE ;
Semantics:

If a <leftright-directive> is in effect, operators at the same precedence
level are evaluated in left-to-right order within a given <formula>, consistent
with the order imposed by parentheses.

If a <rearrange-directive> 1is 1in effect, order of evaluation is still
constrained by parentheses and operator precedence, but the compiler is
otherwise free to rearrange the expresasion for more optimal code generation,
such as by applying associative and commutative laws.

The effect of each of these directives extends from the point at which it
appears to the end of the current namescope or to the point at which a different
expression-evaluation-corder directive appears, whichever is first. At the
beginning of each module, a <{rearrange-directive> is in effect by default.

1N

RS
Downloaded from http://www.everyspec.com

MIL-STD-1589C (USAF)
6 July 1984

9.10 INITIALIZATION DIRECTIVES

Syntax:

{initialize-directive> r:= VINITIALIZE ;
Semantics:

The <initialize-directive> causes all STATIC data objects that are not
explicitly initlalized via an <{item-preset>, <table-preset>, or <block-preset>,
to be preset by default to all zero bits.

Its effect extends from the point at which it appears to the end of the
current namescope.

Constraint:

The <{initialize-directive> must not follew a <statement>, and may not appear
in a table body nor in a <block-body-part> nor in a <{subrcoutine-declaration>.

9.11 ALLOCATION ORDER DIRECTIVES
Syntax:

<order~directive> ::= QRDER ;

r

Semantics:

The <order-directive> directs a compiler to allocate storaxe for the data
objects in a bleck or ordinary table in the order in which their declarations
appear in the text of the <block-body-part> or the <ordinary-table-body>.
Lexically declared data objects that occur earlier in text are allocated
physically lower addresses, and if data objects share a word, lexically earlier
data are allocated to the left of later data. In the absence of an <order-
directive>, a compiler is free to rearrange the physical storage layout for ease
of access or more optimal utilization of memory.

The effect of the <order-directive> extends from the point at which it
appears to the end of the current block or table. If the <order-directive> is

in a block, its effect extends to the components of any blocks or ordinary
tables contained in the block.

If an <order-directive> appears in an <ordinary-table-body> in a <table-
type-declaration>, the ordering extends to all tables declared of that type.

Constraints:

A block affected by an <order-directive> cannot contain an {overlay-
declaration>.

131

Downloaded from http://www.everyspec.com

MIL=-STD-1589C (USAF)
6 July 1984

The <order-directive>, if present, must immediately follow the BEGIN token .
in a <block-body~-part> or <ordinary-table-body>.

132

Downloaded from http://www.everyspec.com

MIL-STD-1589C (USAF)
6 July 1984

APPENDIX
CROSS-REFERENCE INDEX
This appendix provides a cross-reference for terminal and non-terminal constructs
in the J73 syntax used in this manual. For each construct, columns give the

section in the nmanual where it is defined and the sections where it is used or
referenced.

Construct Definition References
A 2.1.1.3, 7.0, 8.1, 8.3.2
ABORT 4.5, 4.10, 8.2.2
abort-phrase .5 4.5
abort-statement 4.10 4.0
ABS 6.3.6, 8.2.2
abs=function 6.3.6 6.3
absolute-address 2.6 2.6
actual-define-paraueter 2.4.1 2.4
actual-define-parameter-list 2.4.1 2.4
actual-input-parameter 4.5 4.5
actual-output-parameter 4.5 4.5
actual-parameter-list 4,5 4.5, 6.3
allocation-specifier 2.1.5 2.1.1, 2.1.2, 2.1.4
AND 5.2, 8.2.2, 8.2.3
and-continuation 5.2 5.2
arithmetic-operator 8.2.3 8.2.3
assignment-operator B.2.3 8.2.3
assignment-statement 4 4.0
B 2.1.1.4, 7.0, 8.1,
8.3.2
BASE 9.8

133

MIL-STD-1589C (USAF)
6 July 1984

Construct

base=directive
bead
bead-size

BEGIN

begin-directive
BIT
bit-conversion

bit-formula

bit-function
bit-function-call
bit-function-variable
bit-item-description
bit-literal
bit-operator
bit-primary
BITSINBYTE
BITSINPOINTER
BITSINWORD

BITSIZE

bit-size
bits-per-entry

bit-type-conversion

Downloaded from http://www.everyspec.com

Definition

9.8
8.3.2
8-3.2

91202

7.0

5-2

6.3.3
5.2

6.1
2.1.1.4
8.3.2
B.2.3

5.2

2.1‘1.”
2.1.2.2

7.0
134

References

5-2

6.1
2.1.1.4
5.2, 8.3
8.2.3
5.2, 5.2.41
1.4

1.4

1.4
6.3.8, 8.2.2
2.1.1.4
2.1.2.2

7.0

Downloaded from http://www.everyspec.com

MIL-STD-1589C (USAF)

Construct Definition References
bit-type=description 2.1.1.4 2.1.1, 7.0
bit-type-name 2.1.17.4 2.1.1.4, 7.0
bit-variable 5.2 5.2, 6.1
BLOCK 2.1.4, 2.2, 8.2.2
block=-body-options 2.1.4 2.1.4
block-body-part 2.1.4 2.1.4, 2,2

. block-declaration 21,4 2.1
block-dereference 6.1 6.1
block~item 6.1 6.1
block-name 2.1.4 2.1.4, 2.5.1,
2.6, 6.1, 6.3.8
. block-preset 2.1.6 2.1.4
block-preset-list 2.1.6 2.1.6
block-preset-values-option 2.1.6 2.1.6
block-reference 6.1 4,5, 6.3.1
. block-table 6.1 6.1
block-table-entry 6.1 6.1
block-table-item 6.1 6.1
bleock-type-declaration 2.2 2.2
block-type-name 2.2 2.1.1.7, 2.1.4, 2.2
boolean~-formula 5.2.2 4,2, 4.3, 9.4
booclean-literal 8.3.3 5.2, 8.3
bounds-argument 6.3.9 6.3.9
bounds-function 6.3.9 6.3
‘II" BY 4.2, 8.2.2

135

MIL-STD~1589C (USAF)
& July 1984

Construct

by-formula
by-or-then-phrase
by=phrase

BYREF

BYRES

BYTE
byte-function
byte-function-variable
BYTEPOS
BYTESINWORD
BYTESIZE

BYVAL

CASE

case=-alternative
case-body

case-index
case=-index-group
case-selector-formula
case-statement

character

character-conversion

Downloaded from http://www.everyspec.com

Definition

y.2

4.2

u.2

6.30”’

4.4
4.4
4.4
4.4
4.4
4.4
4.4

8.1

T.0

136

References

4.2

4.2

4.2

3.3

» B.2.2

3.3, 8.2.2

6‘1

6.3

6.1
].u
1.“

6.3

» 6.3.4, B.2.2

.8, 8.2'2

Downloaded from http://www.everyspec.com

MIL-STD-1589C (USAF)

. 6 July 1984

Construct Definition References
character-formula 5.3 4.4, 5.0, 5.2.1,
5.3, 6.3.4
character-function-call 5.3 5.3
¢haracter-item-description 2.1.1.5 2.1.1.5
character-literal 8.3.4 8.3, 9.1, 9.2.1
character-size 2.1.1.5 2.1.1.5
character-type-description 2.1.1.5 2.1.1, 7.0
. character-type-name 2.1.1.5 2.1.1.5, T.0
character-variable 5.3 5.3, 6.1
comment 8.4 8.2
compile-time-bit-formula 5.2 4.4, 5.0
. compile-time-character-formula 5.3 4.4, 5.0
compile-time-fixed-formula 5.1.3 5.1
compile-time«floating-formula 5.1.2 1.4, 5.1
compile-time=-{ormula 5.0 2.1.6
. compile-time-integer-formula 511 1.4, 2.1.1.1, 2.1.1.2,
2.1.1.3, 2.1.1.4,
2.1.1.5, 2.1.1.6,
201-2-1, 2.1.2023
2.1.2.4, 2.1.6, 2.5,
l"'ou" 5-1) 6’3'9
compile-time-numeric-formula 5.1 5.0
compile-~time-pointer-formula 5.5 5.0
compile-time~status-formula 5.4 2.1.2.1, 2.1.6,
4.4, 5.0
complete-program 1a1
COMPOOL 1.2.1, 8.2.2, 9.1

. compocl-declaration 2.0 1.2.1, 2.0

MIL-STD-1589C (USAF)
6 July 1984

Construct

compool-declared-name
compocl-directive
compocl-directive-list
compool-file-name
compool-module
conmpool-name
compound=-def
compound-ref
compound-statement
CONDITION
conditional-statement
CONSTANT
constant-declaration
constant-index
constant-item-name
censtant-table-item-name
constant-table-name
continuation
control-clause
control-item
controlled-statement
control-letter
control-variable

coryY

copy-directive

Downloaded from http://www.everyspec.com

Definition

T.2.1
1.241
2.5.1
2.5.2

4.0

4.3

9.2.1

138

References

9.1

9.0

9.1

9.1

1.1
1.2.1
2.5.1
2.5.2
4.0
8.2.2
b.3
8.2.2
2.0, 2.1
2.1.6
2.1.3, 6.1, 6.2
6.2
2.1.3, 6.2
4,2

4.2

4.2

4,2

4,2, 6.2
b2
9.2.1

9.0

R R R ——————————

Downloaded from http://www.everyspec.com

Construct

D

data-declaration

data-name

declaration

DEF

DEFAULT

default-option
default-preset-sublist
default-sublist
def-block~-instantiation
DEFINE

define-call
define-declaration
define-name
define-string
definition-part
def-specification
def-specification-choice
dereference
dereference=-cperator

digit

dimension

dimension-list

Definition

2l6

2.0

2.4.1
2.4
2.4
2.4
2.4
2.5.1
2.5.1
6.1
8.2.3
8.1

2.1.2.1

2.1.2.1

139

MIL-STD-1589C (USAF)
6 July 1984

References

2-1-2.3, 8-1, 8-302

2.0, 2.1.4, 2.5.1,
2.5.2

2.6, 3.3, 9.5, 9.8
1.2.2, 1.2.3, 2.0,
3.1, 3.2

1.2.2, 2.5.1, 8.2.2
4.4, 8.2.2

3.4

2.1.6

2.1.1.6

2.5.1

2.4, 8.,2.2

8.2

2.0

2.4, 2.4.1

2.4, 8.2

2.4

2.5

2.5.1

6.1

8.2.3

8.1, 8.2.1, 8.3.1,
8.3.2

2.1.2.1

2.1.2, 2.1.3, 2.2

MIL-STD-1589C (USAF)

6 July 1984
Construct

dimension~-number
directive

DROP
drop-directive

E

EJECT

e ject-directive
ELSE

else-clause
ENCAPSULATION

END

end=directive
entry-size

entry-specifier

equal-or-not-equal-operator

EQV
egv=continuation
EXIT
exit-statement
exponent

EXPORTS

external-declaration

Downloaded from http://www.everyspec.com

Definition

6.3.9

9.0

9.8

9.7.1

4.3

9.2.2

2.1.2.4

5.2

4.8

8.3.1

2.5

150

References

6.3.9

9.8

9.0

8.1, 8.3.2
9.7.1

2.1.2, 2.2
5.2.1, 8.2.3

5-2, 8-2-2’ 8-203

Downloaded from http://www.everyspec.com

MIL-STD-1589C (USAF)
& July 1984

Construct Definition References

F 2.1.1.2, 7.0, 8.7,
8.3.2
FALLTHRU 4.4, 8.2.2
FALSE 8.2.2, 8.3:3
foit 6.3.3 6.1, 6.3.3
foyte 6.3.4 6.1, 6.3.4
FIRST 6.3.11, 8.,2.2
fixed-conversion 7.0 5.1.3
fixed-factor 5.1.3 5.1.3
fixed-formula 5.1.3 5.1, 5.1.3, 5.2.1
fixed-function-call 5.1.3 5.1.3
fixed-item-description 2ela1.3 2.1.1.3
fixed-literal 8.3.1 5.1.3, 8.3.1
fixed-wachine-parameter 1.4 5.1.3
FIXEDPRECISION 144
fixed-term 5.1.3 5.1.3
fixed-type-description 2.1.1.3 2.1.1, 7.0
fixed-type-name 2.1.1.3 2.1.1.3, 7.0
fixed-variable 5.1.3 5.1.3
floating-conversion 7.0 5.1.2
floating-factor 5.1.2 5.1.2
floating=formula 5.1.2 5.1, 5.1.2, 5.2.1
fleating=-function-call 5.1.2 5.1.2
floating-item-description 2.1.1.2 2.1.1.2
floating-literal 8.3.1 5.1.2, 8.3.1

141

MIL-3TD-1589C (USAF)
6 July 1984

Construct

floating-machine-parameter
floating-primary
floating-term
floating-type-description
floating-type-name
floating-variable
FLOATPRECISION

FLOATRADIX
FLOATRELPRECISION
FLCATUNDERFLOW

FOR

for-clause

formal-define-parameter

formal-define-parameter-list

formal-input-parameter
formal-output-parameter
formal-parameter-list

formula

fractional-form
fraction-specifier
FREE

function-body

Definition

1.4
5.1.2
5.1.2
2e141.2
2.1.1.2

5.1.2

4,2
2.4
2.4
3.3
3.3
3.3

5.0

8-3-1

2.741.3

3.2

142

Downloaded from http://www.everyspec.com

References

2.1.1, T.0
2.1.1.2, 7.0
5.1.2

1.4

1.4

1.4

1.4

4.2, 8.2.2

y.2
2.4

2-“

1.4, 2.1.1.3
8’2.2

3.2

Construct

function=call

function-declaration
function-definition
function-heading

function-name

G

GOTO
goto-statement

H

HANDLER

I

IF

if-statement
IMPLFIXEDPRECISION
IMPLFLOATPRECISION
IMPLINTSIZE

IN
inecrement-amount
index

INITIALIZE
initialize-directive
initial-value

INLINE

Downloaded from http://www.everyspec.com

Definition

6.3

3.2
3.2
3.2

3.2

b7

4.3

6.3.2

9.10

b.2

143

MIL-STD-1589C (USAF)

6 July 1984

References

4.7, 8.2.2
4.0

8.1, 8.3.2
8.2.2

8.1, 8.3.2
4.3, 8.2.2
4.0

1.4

1.4

1.4

8.2.2
6.3.2

6.1

5.0
4.2

3.4, 8.2.2

HIL-5TD-1589C (USAF)
6 July 1984

Construct

inline-declaration
input-parameter-name
INSTANCE
integer~conversion
integer-factor

integer-formula

integer-function-call
integer-item-description
integer-literal
integer-machine-parameter
integer~-primary
integer-size
integer-term
integer-type-description
integer-type-name
integer-variable
"INTERFERENCE
interference-control
interference-directive
INTERRUPT
INTPRECISION
intrinsic-function-call
ISBASE

isbase-directive

Downloaded from http://www.everyspec.com

Definition

3.4

3.3

5.1.1
2elalat
8.3.1
1.4
5.1.1

2.1.141

9.5

3.5

6.3

9-8

144

Refererces

2.0
3.3
8.2.2
5.1.1

5.141, 5.1.3

k.4, 4.9, 5.1, 5.1.1,
5.2.1, 6.1, 6.3.2,
6-3-3; 6.3-”, 6-3.5
5.1.1

2.141.1
5.1.1, 8.3.1, 9.8
5.7.1

5.1.1; 5.1.2
Toby, 241141
5.1.1, 5.1.3
2.1.1, 7.0
2.14141, 7.0
5.1.1

9.5

9.5

9.0

8.2.2

1.4

6.3

9.8

9.0

Downloaded from http://www.everyspec.com

MIL-STD-1589C (USaF)

. 6 July 1984

Construct Definition References
ITEM 2.1.1, 2.1.2.3,
2.1.2.4, 8.,2.2,
item 6.1 6.1
item-declaration 2.1.1 2.1
item-dereference 6.1 6.1
item-name 2.1.1 2.1.1, 2.6,

‘I' 4.2, 6.1
item-preset 2.1.6 2.1.1, 2.1.3
item-preset-value 2.1.6 2.1.6
item-type=-declaration 2.2 2.2
item=-type-description 2.1.1 2.1.1, 2.1.2.3,

. 2.1.2.4, 2.2, 3.2
item=-type-name 2e2 210141, 2.1.1.2,
2.1.1.3, 2.1.1.4,
2.1.1.5, 2.1.1.6,
2.1.1.7, 2.2

‘l' J 8.1, 8.3.2
K 8.1, 8.3.2
L 8.1, 8.3.2
LABEL 2.3, 8.2.2
label 4.0 1.2.3, 3.1, 4.0, 4.4
LAST 6.3.11, B.2.2
LBOUND 6.3.9, 8.2.2
LEFTRIGHT 9.9
leftright-directive 9.9 9.0

) letter 8.1 2.1.1.6, 2.4, 4.2,
8.7, 8.2, 8.2.1

145

MIL-5TD-1589C (USAF)
6 July 1984

Construct

letter-digit-3-cr-prime

letter-or-$

LIKE

like-option
LINKAGE
linkage=-directive
LIST

LISTBOTH
listboth-directive
list-directive
LISTEXP
listexp-directive
LISTINV
listinv-directive
literal

LoC

loc-argument
location-specifier
loc=function
LOCSINWORD
logical-continuation
logical-operand
logical-operator

loop-statement

Downloaded from http://www.everyspec.com

Definition

8.2.1

8.2.1

2.2

9.3

9.7.2

9.7.1

9.7.2

9.7.2

8.3

6.3.1

2-1-2."‘

603.1

5.2

5.2

8-2-3

4.2

146

References

8.2.1
g.2.1
2.2, 8.2.2
2.2

9.3

9.0
9.7.1
9.7.2
9.0

9.0
9.7.2
9.0
9.7.2
9.0

8.2
6.3.1, 8.2.2
6.3.1
2.1.2.4
6.3

1.4

5.2

5.2
8.2.3

4.0

Downloaded from http://www.everyspec.com

Construct

loop-type
lower-bound
lower-bound-option
M
machine-specific-function=-call
machine-specific-procedure=~call
main-program-module
mark

MAXBITS

MAXBYTES

MAXFIXED
HAXFIXEDPRECISION
MAXFLOAT
MAXFLOATPRECISION
MAXINT

MAXINTSIZE
MAXSIGDIGITS
HMAXTABLESIZE
MINFIXED

MINFLOAT
MINFRACTION

MININT
MINRELPRECISION
MINSCALE

MINSIZE

Definition

4,2
2.1.2.1

2s1.241

6.3

u.s

1.2.3

147

MIL.STD-1589C (USAF)
6 July 1984

References

4,2

2.1.2.1, 4.4
2.1.2.1
2.1.2.3, 8.1, 8.3.2
6.3

4.5

1.1

8.1

1.4
1.4
1.4
1.4
1.4
1.4
1.4
1.4
1.4
1.4
1.4
1.4
1.4
1.4
1.4
1.4

1.4

MIL-STD-1589C (USAF)
6 July 1984

Construct

10D

module
multiply=-divide-or-mod
multiply-or-divide

i

name

named-bit-constant
named-character-constant

named-constant

named-fixed-constant
named-floating-constant
named=integer-constant
named-pointer-constant
named-status-constant
named-table-constant
named-variable

nbit

nbyte

NENT

nent-argument

nent-function

Downloaded from http://www.everyspec.com

Definition

1.1
8.2.3
8.2.3

8.2.1

5.2
5.3

6.2

6.3.12
6-3012

148

References .

8.2.2, 8.2.3

1.1

5.1.1, 8.2.3

5.1.2, 5.1.3, 8.2.3
2-1-2.3’ 801, 8-3-2
2.1.1,
2.3,

.4

DO
.
EOMN ¢
-
-

5.5 @

5.4

5.6

6.1, 6.3.1
6.1, 6.3.3
6.1, 6.3.4
6.3.12, 8.2.2
6.3.12

6.3

Construct

NEW

NEXT

next-argument
next-function

NOLIST
nolist-directive
non-nested-subroutine
NOT

NULL

null-declaration

null-statement
number

numeric-formula

numeric-literal
NWDSEN
nwdsen-argument
nwdsen-function
o]

operator

OR
or-continuation
ORDER

order-directive

Downloaded from http://www.everyspec.com

Definition

6.3.2

6.3.2
9.7.1

1.2.2

2.7

4.0

8.3.1

803-1

6.3.10
6.3.10

8.2.3

5.2

149

MIL-STD-1584C (USAF}

6 July 1984

References

8.2.2

6.3.2, 8.2.2
6.3.2

6.3

9.7.1

9.0

1.2.2, 1.2.3

5.2, 8.2.2, 8.2.3
8.2.2, 8.3.5

2 0 o1 2-‘";
2.7, 2

2.3, 2.
H, 5.1, 2.

1.
5.

6.3.10, 8.2.2
6.3.10

6.3

8.1, 8.3.2

8.2

5.2, 8.2.2, 8.2.3
5.2

9.11

9.0

Downloaded from http://www.everyspec.com

MIL-3TD-1589C (USAF)
6 July 1984

Construct

ordinary-entry-specifier
ordinary-table-body
ordinary-table-item~declaration
ordinary-table-options
other-character
output-parameter-name
OVERLAY

overlay-address
overlay-declaration
overlay-element
overlay-expression
overlay-string

P

packing-specifier
PARALLEL
parameter-binding

plus-or-minus

pointer-conversion

pointer-formula

pointer-function-call

pointer-item-description
peinter-item-name

pointer-literal

Definition

2+1.2.3

2.1.2.3

2.1.2.3

2.1.2.3

3.3

2.6

2.6

2.6

2.6

2.1.2.3

3.3

8-2.3

7.0

5.5

5.5

2.1.1.7

8.3.5

150

References

2.1.2

2.1.2.3

2.1.243

214243

8.1

3.3

2.6, 8.2.2

2.6 ®
2.0, 2.1.4

2.6

2.6

2.1-2-3

2.1.2.2, 8.2.2

3.3 ®

5.1.1, 5.1.2, 5.1.3,
8-2.3

5.5

5-0' 5!20]; 5l5,
6.1, 6.3.2

5.5

2.1.1.7

b1

Downloaded from http://www.everyspec.com

MIL-STD-1589C (USAF)

151

. 6 July 1984
Construct Definition References
pointer-type-description 2.1.1.7 2.1.1, T.0
pointer-type-name 2.1.1.7 2.1.1.7, 7.0
pointer-variable 5.5 5.5
POS 2.1.2.4, 2.1.6, 2.6
precision 2.1.1.2 1.4, 2.1.1.2
preset-index-specifier 2.1.6 2+1.6
. preset-values-option 2.1.6 2.1.6
PROC 3.1, 3.2, B.2.2
procedure-body 3.1 3.1
procedure-call-statement 4.5 4.0
. procedure-declaration 3.1 3.0
procedure-definition 3.1 3.0
procedure-heading 3.1 3.1
procedure-module Te242 Tal
. procedure-name 3.1 3.1, 3.3, 4.5, 6.3.1
PROGRAM 1.2.3, 8.2.2
programn-body 1.2.3 1.2.3
pProgram-name 1.2.3 1.2.3
PROTECTED 8.2.2
Q 8.1, 8.3.2
R 2.1.1.2, 8.1, 8.3.2
READONLY 8.2.2
‘ real-literal 8.3.41 8.3.1
. REARRANGE 9.9

MIL-STD=-1589C (USAF)
6 July 1984

Construct

rearrange-directive
REC

REDUCIBLE
reducible-directive
REF

ref-specification
ref-specification-chcice
REGISTER
relational-expression
relational-operator
RENT

REP

rep-conversion
repetition-count
rep-function-variable
reserved-word

RETURN
return-statement

round-or-truncate

scale-specifier
separator

SGN

Downloaded from http://www.everyspec.com

9.9

9.6

2-5-2

2.5.2

5-2-1

§.2.3

4.6

2.1.1,2

2.1.1.3

8'2.”

152

References

9.0

3.1, 8.2.2
9.6

9.0

2.5.2, 8.2.2
2.5

2.5.2

8.2.2

5.2

5.2.1, 8.2.3
3.1, 8.2.2
7.0, 3.2.é
6.1, 7.0
2.1.6

6.1

2.1.1.6, 8.2

b,6, 8.2.2

8.2

6.3-7’ 8.2-2

Downloaded from http://www.everyspec.com

Construct

shift-count
shift-direction
shift-function
SHIFTL

SHIFTR

3ign

SIGNAL

sign-function

simple-def

simple-ref
simple-statement
size-argument
size-function

size-type

SKIP

skip-directive

spacer
specified-entry-specifier
specified-item=-description
specified-preset-sublist
specified-sublist
specified-table~body
specified-table-item-declaration

specified-table-options

Definition

6.3.5
6.3.5
6.3.5

8.3.1

6.3.7
2.5.1
2.5.2
4.0

6.3.8
6.3.8
6.3.8

9.2.2
2.6
2.1.2.4

2.1.2.4

MIL-STD-1589C (USAF)
6 July 1984

References

6.3.5

6.3.5

6.3

6.3.5, 8.2.2
6.3.5, 8.2.2

5-1-1, 5‘102) 5-1'3’
8-3.1

8.2.2
6.3
2.5.1
2.5.2
4.0
6.3.8
6.3
6.3.8
9.2.2

9.0

MIL-STD-1589C (USaF)
6 July 1984

Construct

START

starting-bit
starting-word

statement

statement-name

statement-name-declaration
STATIC

STATUS

status

status-constant
status-conversion

status-formula

status-function-call
status-inverse-argument
status-inverse-function
status-item-deseription
status-list
status~list-index
status-size
status-type-description
status~type-name
status-variable

STOP

Downloaded from http://www.everyspec.com

Definition

2.1.2.4
2.1.2.4

.o

u.o

2.3

2.1.1.6
2.1.1.6

7.0
5.4

5.4
6.3.11
6.3.11
2.1.1.6
2.1.1.6
2.1.1.6
2.1.1.6
2.1.1.6
2.1.1.6

5.4

154

References

: 1.2.2, 1.2.3,

1
2
2-1.2.”
2.1.2.4

3-1
3

-
=
.

1.2.3,
u-z, uo

2.3, 3.3, 4.0,
4.5, 4.7, 6.3.1

2.0, 2.5.1
2.1.5, 8.2.2
2.1.1.6, 8.2.2
2.1.1.6

2-1-1-6’ 5-“. 8-2

2.1.1.6

2.1.1.6

2.1.1.6

2.1.1.6

2.1.1, 7.0

2.1.1.6, 6.3.11, 7.0
5.4

4.9, 8.2.2

Downloaded from http://www.everyspec.com

MIL-STD-1589C (USAF)

. 6 July 1984

Construct Definition References
stop-statement 4.9 4.0
structure-specifier 2.1.2.2 2.1.2, 2.2
subroutine-attribute 3.1 3.1, 3.2
subroutine-body 3.1 3.1, 3.2
subroutine=-declaration 3.0 2.0, 2.5.2
subroutine-definition 3.0 1.2.2, 1.2.3, 3.1

. subroutine-name 3.3 3.3, 3.4
subseript 6.1 6.1, 6.2
symbol 8.2 9.3
T 2.1.1.2, 2.1.2.2,
8.1, 8.3.2
. TABLE 2.1.2, 2.2,
8.2.2
table 6.1 6.1
table-conversion 7.0 5.6
. table-declaraticn 2.1.2 2.1
table-dereference 6.1 6.1
table-description 2.1.2 2.1.2, 2.1.3
table-entry 6.1 6.1
table~formula 5.6 5.0, 5.6
table-item 6.1 6.1
table-item-name 2.1.2.3 2.1.2.3, 2.1.2.4,
6.1, 6.2
table-name 2.1.2 2.1.2, 2.6, 6.1,
6.3.9, 6.3.10, 6.3.12

155

Downloaded from http://www.everyspec.com

MIL-STD-1589C (USAF)
6 July 1984

Construct

table-preset

table-preset-list
table-type-declaration

table-type-name

table~-type-specifier
table-variable
TERM

THEN

then-phrase

TO

TRACE
trace-control
trace-directive
TRUE

TYPE
type-declaration
type-name

U

UBOUND

UPDATE

upper-bound
user-defined-function=-call

user-defined-procedure-call

Definition

2.1.6

2.1.6

2.2

2.2

2.2

5.6

4.2

9.4
9.4

2.2

2.1.1.7

2e1.2.1

6.3

4-5

156

References

-1-2' 2-1-2.3,'
.1.2.4
6

N M

2-1.

2.2

2.1.1.7, 2.1.2, 2.2,6.3.9,

6.3.10, 6.3.12, 7.0
2.2

5.6

1.2.1, 1.2.3, 8.2.2
4.2, 8.2.2

4.2

8.2.2

9.4

9.4

9.0

8.2.2, 8.3.3

2.2, 8.2.2

2.0

2.1.1.7

i, 7.0, 8.1,

2.1.1.
8.3.2
6.3.9, 8.2.2
§.2.2
2.1.2.1, 4.4
6.3

u-5

Downloaded from http://www.everyspec.com

MIL-5TD=~-1589C (USAF)
6 July 1984

Construct Definition References

v 2.1.1.6, 2.1.2.4, 8.1,
8§.3.2

variable 6.1 4.1, 4.5, 5.1.1,
5.1.2, 5.1.3, 5.2,
5.3, 5.4, 5.5,
5.6

variable-list b1 b1

W 2.1.2.4, 2.6, 8.1

. which-bound 6.3.9 6.3.9

WHILE 4.2, 8.2.2

while-clause .2 4.2

while-phrase 4.2 4.2

WITH 8.2.2

. WORDSIZE 6.3.8, 8.2.2

words-per-entry 2.1.2.4 2.1.2.4

WRITEONLY 8.2.2

X 8.1

‘I" XOR 5.2, 8.2.2, 8.2.3

xor=-continuation 5.2 5.2

Y 8.1

Z 2.1.1.2, 8.1

ZONE g§.2.2

157

Downloaded from http://www.everyspec.com

MIL-STD~1589C {USAF)

6 July 1984
Custodians: Preparing Activity:
Air Force = 02 Air Force - 17

(Project IPSC0210)

158

TU.S. GOVERNMENT PRINTING OFFICE: 1984-—703-040/A3613

